Microbiological Hydroxylation of Steroids. Part VIII. ${ }^{1}$ The Pattern of Monohydroxylation of Diketones and Keto-alcohols derived from 5α Androstane with Cultures of the Fungus, Rhizopus nigricans

Abstract

By (Mrs.) Virginia E. M. Chambers, William A. Denny, John M. Evans, Sir Ewart R. H. Jones, Alexander Kasal, G. Denis Meakins, and John Pragnell, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

Diketones and keto-alcohols derived from 5α-androstane are readily converted into monohydroxy-derivatives by Rhizopus nigricans. Varying the positions and oxidation levels of the oxygen functions leads to hydroxylation at different positions. Substrates with one oxygen substituent in each of the terminal rings are attacked at position 11 or 7 ; those with one group in rings B or C are hydroxylated at position 16 if the second group is in ring A, and at position 3 if the second group is in ring D.

The results are rationalised by assuming the presence of three dual-purpose sites on the enzyme surface capable of binding to the steroidal oxygen groups and of hydroxylating those positions of the steroid nucleus which come into their vicinity.

In the preceding paper ${ }^{1}$ the hydroxylation of mono-oxygenated 5α-androstanes and 5α-estranes with Rhizopus nigricans was reported. The present work is concerned with dioxygenated substrates (diketones and keto-alcohols) in which the positions of the polar groups around the steroid nucleus have been varied systematically. Table 1 summarises the main microbiological results obtained by incubating 36 such substrates with R. nigricans. [The use of the (arabic) serial number sequence of steroids throughout this work, and considerations about the structural elucidation and the reporting of new compounds have been explained earlier. ${ }^{2}$ Compounds nos. $540-633$ (whose n.m.r. signals are listed in Table 2) and some of the new steroids with numbers below 375 are described here.]

Monoketones are hydroxylated slowly by R. nigricans, and even after 6 days most of them give rather low yields of dihydroxylated products. ${ }^{1}$ The much higher reactivity of dioxygenated substrates (Table 1) may arise from their ability to permeate the cell walls more easily (an effect caused partly by their increased solubility in water), or to bind more efficiently to the appropriate enzyme sites (see later). Shorter incubation times are needed, comparatively little starting material is recovered, and in most cases the monohydroxylated products are isolated without difficulty.

The broad pattern of these monohydroxylations can be interpreted in terms of the idea ${ }^{1}$ of three dualpurpose (binding or hydroxylating) sites on the enzyme surface, located in positions corresponding to those of carbon atoms 3,11 , and 16 (or 3,7 , and 16) of the steroid nucleus. Their role in a particular instance depends upon whether those portions of the steroid molecule which become adjacent to them in the enzymesubstrate complex already bear oxygen atoms. The dioxygenated substrate orients itself so as to maximise hydrophilic binding between its two substituents and two of the sites; the remaining site then becomes involved in the hydroxylation of the nearest steroid carbon atom. The symmetrical disposition of these sites allows a suitable disubstituted steroid to take up

[^0]more than one orientation; two such orientations have been termed the normal and the reverse mode. ${ }^{1}$ For substrates with an oxygen function in each terminal ring, the normal mode [e.g. (I)] leads to hydroxylation at position 11, and the reverse mode [e.g. (II)] to hydroxylation in ring \mathbf{B} (position 7 or 6). In general, when the substrate's oxygen groups are at two of the 3 -, 11- (7-

(I) Example of normal mode

(II) Example of reverse mode
or 6 -), or 16 -positions then substantial monohydroxylation occurs at the third position. Even when adjacent positions are involved, e.g. 2,16-(CO) $)_{2}, 7,17-(\mathrm{CO})_{2}$, and $11-\mathrm{CO}-17 \beta-\mathrm{OH}$, there is reasonable conformity with this rule.

Two types of substrates, diketones and keto-alcohols, containing oxygen in rings A and D , have been examined. Of the four androstanediones, three (2,16-, 2,17-, and $3,16-$) appear to hydroxylate only in the reverse mode. Models show that for the first two binding in the normal mode does not bring a steroid position close to the third enzyme site; hydroxylation in this mode is therefore unlikely. The geometric requirements are satisfied by both modes with the third diketone (5α-androstane-3,16-dione), and the observation of ring-в hydroxylation suggests that a directing influence' effect ${ }^{2}$ (16-$\mathrm{CO}>3-\mathrm{CO})$ is operating. Hydroxylation of 5α-andro-stane-3,17-dione, the fourth example, to about the same extent in both modes indicates that there is not much difference between the directing strengths of these carbonyl groups. (It may be that the $17-\mathrm{CO}$ is slightly the stronger, as the 3 -monoketone undergoes only normal mode hydroxylation whereas the 17 -monoketone gives small amounts of products of both types.) ${ }^{1}$
The most striking results are the 11α-hydroxylation

[^1]Table 1
Hydroxylation of dioxygenated 5α-androstanes by Rhizopus nigricans

5α-Androstane
In the ' Products ' columns those oxygen functions introduced during the incubation are in bold type. The entries under conditions refer to the use of ethanol (E), acetone (A), and dimethyl sulphoxide (D) as solvents for the substrate and to the time of incubation (in days). The yields are calculated after making allowance for recovered starting material.

Table 1 (Continued)

Substrate	Conditions	Substrate recovered	Main product(s)			Other product(s)		
3-CO-11 β-OH	E3	27	11-CO-9 $\alpha, 16 \beta-(\mathrm{OH})_{2} 13$		13	$3 \beta, 16 \beta-(\mathrm{OH})_{2}$		
				$16 \beta-\mathrm{OH}$	11	$3 \beta, 6$	$11-\mathrm{CO}-(\mathrm{OH})_{2}$	$\stackrel{1}{2}$
			11-CO-1	16 β - OH	9		CO-16x-(OH) ${ }_{2}$	1
			$3 \beta-11-\mathrm{CO}-1$	16 $\beta-(\mathrm{OH})_{2}$	9			
17ß-OH-6-CO	E4	0	$\begin{aligned} & \mathbf{3} \beta- \\ & \mathbf{3} \alpha- \end{aligned}$	$\begin{aligned} & \mathrm{OH} \\ & \mathrm{OH} \end{aligned}$	23	11 α - OH		11
					21		$, 11 x-\quad(\mathrm{OH})_{2}$	
						$3 \times$,	$11 \times$ - ${ }^{(O H)}$	
7,17-(CO) 2	E4	0	3 \%-	OH	37	39-	OH	7
						$3 \alpha-$	$17 \beta-(\mathrm{OH})_{2}$	
						3 c ,	$11 \alpha-\quad(\mathrm{OH})_{2}^{2}$	5
						3¢,	$17 \beta-(\mathrm{OH})_{2}$	4
$6 \alpha-\mathrm{OH}-17-\mathrm{CO}$	E4	16	11 $\alpha-$	OH	58	3¢-	$\mathrm{OH}^{\text {O }}$	10
$17 \beta-\mathrm{OH}-7-\mathrm{CO}$	E4	0	$3 \alpha-$	OH	52	$\begin{aligned} & 3 \beta \\ & 4 \alpha- \end{aligned}$	OH	12
							OH	3
$7 \alpha-\mathrm{OH}-17-\mathrm{CO}$	E4	10	3β -	OH	77			
$7 \beta-\mathrm{OH}-17-\mathrm{CO}$	E4	25	$3 \beta-$	OH	57			
11,16-(CO) 2	E2	22	$3<-$	OH	44			
			33-	OH	29			
11,16-(CO) 2	E6	23	3, ${ }^{7} \times$ /	$(\mathrm{OH})_{2}$	24	$3 \alpha-$$3 \beta-$	OH	10
							OH	
11,17-(CO) 2	E4	21	$3 \times$,	$17 \beta-(\mathrm{OH})_{2}$	36	4α,	$17 \beta-(\mathrm{OH})_{2}$	15
						$3 \times-$	OH	14
17及-OH-11-CO	E4	26	$3 \boldsymbol{\alpha}$ -	OH	47			
			4\%-	OH	25			

(98%) of the 16β-hydroxy- 3 -ketone and the 7α-hydroxylation (90%) of the 3β-hydroxy- 16 -ketone [see (I) and (II)]. The mono-alcohols are unaffected by R. nigricans, ${ }^{1}$ but in conjunction with 3 - and 16 -carbonyl groups respectively the 16β - and 3β-hydroxy-groups not only facilitate hydroxylation but also enhance the directing effect of the carbonyl groups, presumably by leading to precise modes of binding at the active sites. In association with a 3β-hydroxy-group the 17-CO shows a marked preference for hydroxylation in one (the reverse) mode; the 3α-hydroxy-group is not so effective, however, 3α-hydroxy- 5α-androstan-17-one giving products from both modes. The presence of a 17β-hydroxy-group in the $17 \beta-\mathrm{OH}-3$-CO substrate leads to easier hydroxylation but not to selective processes; this group's asymmetric location, as compared with that of a 16β-hydroxy-group, may impede binding in the normal manner and hence encourage attack in the reverse mode.

Hydroxylations of all but one (the $6 \alpha-\mathrm{OH}-17-\mathrm{CO}$) of the 25 substrates with one oxygen function in ring b or C and the second in ring a or D are readily interpreted on the basis of three dual-purpose sites. Thus, those

[^2]with the second substituent in ring A are hydroxylated in ring D [e.g. (III)]; conversely, a ring D substituent leads to ring a hydroxylation [e.g. (IV)].

With both diketones and keto-alcohols the hydroxylations are highly specific in a positional sense. For example, hydroxylation in ring D occurs almost entirely at position 16 ; minor products, where present, arise from 17 -hydroxylation. Similarly ring a hydroxylation gives 3-hydroxy-products, sometimes accompanied by small amounts of 4-hydroxy-isomers. However, as already observed with monoketones, ${ }^{1}$ hydroxylations with R. nigricans are subject to considerable variation in a stereochemical sense. Thus, although substitution at position 11 leads exclusively to 11α-products, hydroxylation at the other common positions (3, 7, and 16) gives α - or β-products, or mixtures of both. Changing the configuration of a hydroxy-group in the substrate influences the stereochemical outcome in some cases (e.g. $6 \beta-\mathrm{OH}-3-\mathrm{CO} \longrightarrow 16 \beta-\mathrm{OH}$, but $6 \alpha-\mathrm{OH}-3-\mathrm{CO} \longrightarrow 16 x-$ and $16 \beta-\mathrm{OH}$) but not in others (e.g. both $7 \alpha-$ and $7 \beta-$ $\mathrm{OH}-17-\mathrm{CO} \longrightarrow 3 \beta-\mathrm{OH})$.*
R. nigricans has been used frequently for the 11monohydroxylation of $\mathbf{3 , 1 7}$-disubstituted steroids. ${ }^{4}$ The present work shows that by selecting the substrates judiciously, hydroxylation can be directed to other positions. For this purpose the oxidation level of the substrates' substituents may be as important as their positions. Particularly striking is the comparison of $17 \beta-\mathrm{OH}-3-\mathrm{CO} \longrightarrow$ mainly $11-\mathrm{OH}(34 \%)$ with $3 \beta-\mathrm{OH}-$ $17-\mathrm{CO} \longrightarrow 7-\mathrm{OH}(63 \%)$. The ability to switch substitution in this way has been exploited in large-scale preparative work which will be described later. ${ }^{5}$

[^3]Table 2
N.m.r. signals

The results, presented in the form used earlier,a were obtained by examining solusome relatively insoluble triols are not given: each of these triols is followed by an entry for the corresponding triacetate. No.

549	Androst-4-ene-3,6-dione
\%41	$\overline{5} x$-Androstane-3,6,15trione ${ }^{*}$
542	5x-Androstane-4,7,17-trio
543	$\begin{aligned} & 5 \alpha-\text { Androstane-4,11,17- } \\ & \text { trione } \end{aligned}$
544	5α-Androstane-3,6,11,16tetraone
545	$5 x$-Androstane-3,6,11,17tetraone
546	$5 x$-Androstane-3,7,11,16tetraone
547	5x-Androstane-3,7,11,17-

348 : 3 -Hydine
11-one
549 5-Hydroxy- 5α-androstan-6-one \dagger
551) 5-Hydroxy-5 β-androstan-

551 6x-Hydroxy- 5α-androstan552 6 ${ }^{3-\text {-Hydrone }}$
17-one y - 5α-androstan-
553 6 β-Hydroxy- 5α-androstan-3-one
554 ix $\mathrm{i} \cdot \mathrm{Hydroxy} \mathrm{y}-\overline{\mathrm{v}} \alpha$-androstan555 1-1 β-Hydrox
11-one
556 -Hydroxy 5α-androstane
-17-dione
5573α-Hydroxy- 5α-androstane-
558 3B.Hydroxy-

11,16-dione
560 6α-Hydroxy- 5α-androstane-3,17-dione
561 16 α-Hydroxy- $\overline{0} \alpha$-androstane-
$56 \leq 16 x$-Hydroxy- $\overline{0} \alpha$-androstane
563 16 β-Hydroxy-5 α-androstanc-
564 16 β-Hydroxy- 5α-androstane

66 -3,11,16-trione
$0-H y d r o x y-5 \alpha$-and
$6,11,17-$-trione +

? α-Hydroxy $\cdot \boldsymbol{j} \alpha$-an
3,11,16-trione \dagger
563 - α-Androstane- $3 \beta, 6 \alpha \cdot$ diol
$5692 \alpha, 6 \alpha$-Dihydroxy- 5α androstan 16 -one \ddagger $2 \alpha, 7 \alpha$-Dihydroxye $2 \alpha, 7 \alpha \cdot$ Dihydroxy- $5 \alpha-$
androstan- 17 -one § $5712 \alpha, 7 \beta$-Dihydroxy -5α androstan-17-one § $5723 \alpha, 17 \beta$-Dihydroxy- $\bar{\alpha} \alpha-$ androstan $\cdot 6$-one $5733 \alpha, 17 \beta$-Diacetoxy- 5α 74 androstan-7-one $5743 \alpha, 17 \beta$-Dihydroxy- 5α. $5753 \beta, 6 \alpha$-Dihydroxy- 5α 5 76 38,6 α-Diacetoxy-5 α -androstan-17-one $5773 \beta, 16 \alpha$-Diacetoxy-5 $\alpha-$ $5753 \beta, 16 \alpha$-Dihydroxyandrost-4-en-6-one
59 з $\beta, 16 \alpha$-Dihydroxy580 3 $\beta, 16 \alpha$-Dihydroxy- $5 \alpha-$ $5813 \beta, 16 \beta$-Dihydroxyandrost-4-en-6-one
58. 3 $3 \beta, 17 \beta$-Dihydroxy- $5 \alpha-$ androstan-6-one $5834 \alpha, 17 \beta$-Dihydroxy- $5 \alpha-$ 84 4α androstan-7-one $5844 \alpha, 17 \beta$-Dihydroxy- 5α 58.5 5,17 -Dihydrostan-11-one , 17 -Dinydroxy-5 α 536 6x,11 α-Dihydroxy- 5α 587 androstan-3-one $5876 \alpha, 16 \alpha$-Dihydroxy $\cdot 5 \alpha$ 583 androstan-3-one α androstan-3-one

Table 2 (Continued)

No.			τ_{3}	τ_{3} (calc.)		$=\mathrm{CH}-\mathrm{OR}$	
589	6 $\alpha, 17 \alpha$-Dihydroxy- $\overline{\text { a }}$ -	19	$8 \cdot 96$	$8 \cdot 97$	H-6	6.55	m(24)
	androstan-3-one	18	$9 \cdot 31$	$9 \cdot 33$	H-17	6.25	d(6)
590	$6 \alpha, 17 \beta$-Dihydroxy- $5 \alpha-$	19	$8 \cdot 97$	$8 \cdot 95$	H-6	$6 \cdot 57$	$6(10,10,5)$
	androstan-3•one	18	9.24	$9 \cdot 24$	H-17	$6 \cdot 36$	t(8) ${ }^{\text {(}}$
591	$6 \beta, 16 \beta$-Dihydroxy-5 χ^{-}	19	8.75	$8 \cdot 77$	H-6	6.23	$4(3,3,1 \cdot 5)$
	androstan-3-one	18	8.98	8.98	H-16	$5 \cdot 58$	m(15)
592	$7 \alpha, 16 \beta$-Dihydroxy-5 α -	19	$8 \cdot 97$	$8 \cdot 96$	H-7	6.13	$\mathrm{d}(2)$
	androstan-3-one	18	$9 \cdot 02$	$3 \cdot 01$	H-16	$5 \cdot 57$	m(17)
593	$7 \beta, 16 \beta$-Dihydroxy- $\bar{j} \alpha-$	19	8.94	8.94	${ }^{\mathrm{H} \cdot 7}$	6.65	$\mathrm{m}(20)$
	androstan-3-one \dagger	18	9.00	8.99	H-16	$5 \cdot 60$	$\mathrm{m}(19)$
594	$11 \alpha, 16 \alpha$-Dihydroxy-ప̄ α -	19	8.87	8.87	H-11	6.02	$6(10,10,5)$
	androstan-3-one	18	9-24	$9 \cdot 23$	H-16	$5 \cdot 55$	$\mathrm{m}(18)$
595	$11 \alpha, 17 \beta$-Dihydrox y - $5 \alpha-$ androstan-6-one	19 18	9.12 9.26	9.15 9.23	H-11	$6 \cdot 02$ 6.32	($\begin{gathered}6(10,10,5) \\ t(7)\end{gathered}$
596	$11 \beta, 16 \beta$-Dihydroxy- ${ }^{\text {c }} \alpha$ -	19	8.71	8.73	H-11	$6 \cdot 32$ $5 \cdot 66$	
	androstan-3-one	18	8.78	8.77	H. 16	$5 \cdot 60$ \}	$\mathrm{m}(14)$
597	10及-Hydroxy-3-oxoestr-4-en-17 β-yl acetate	18	9-15	$9 \cdot 14$	H-17	$5 \cdot 39$	$4(9,7)$
598	$6 \beta, 17 \beta$-Diacetoxyestr.	18	$9 \cdot 11$	9.09	H-6	$4 \cdot 55$	$t(7)$
599	11-en-17 β-Diacetoxyestr-	18	$9 \cdot 08$	9.08	$\mathrm{H}-17$ $\mathrm{H}-11$	$5 \cdot 37$ 4.96	$4(9,7)$ $6(10,10,5)$
	4-en-3-one				H-17	5-84	$4(9,7)$
600	16及,17 β-Diacetoxyestr-	18	9.03		H-16	$4 \cdot 73$	$6(8,8,5)$
	4-en-9-one				H-17	$5 \cdot 43$	d(8)
601	$3 \beta, 7 \beta$-Dihydroxy-5 $\alpha-$	19	8.90	8.90	$\stackrel{\mathrm{H}-3}{\mathrm{H}-7}$. 43	$\mathrm{m}(20)$
	androstane-11,16-dione	18	$9 \cdot 16$	9.13	H-7	$6 \cdot 45$	m(20)
602	$3 \alpha, 11 \alpha$-Diacetoxy-5 α -	19	$8 \cdot 80$	8.82	H-3	$5 \cdot 00$	$\mathrm{m}(7)$
	androstane-7,17-dione	18	9.08	$9 \cdot 05$	H. 11	$4 \cdot 70$	6(10,10,6)
603	$9 \alpha, 16 \alpha$-Dihydroxy- $5 \alpha-$ androstane-3,11-dione	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 8 \cdot 75 \\ & 9 \cdot 28 \end{aligned}$	8.75 9.28	H-16	$5 \cdot 50$	$\mathrm{m}(17)$
604	$9 \alpha, 16 \beta$-Dihydroxy- $5 \alpha-$	19	8.72	8.72	H-16	$5 \cdot 55$	$\mathrm{m}(15)$
	androstane-3,11-dione \dagger	18	9.04	$9 \cdot 04$			m(15)
$\begin{array}{r} {[605} \\ 606 \end{array}$	$\bar{\delta} \alpha$-Androst:me-3ק,6 $\alpha, 16 \alpha$-triol]						
	4 $\beta, 6 \alpha, 16 \alpha$-Triacetox ${ }^{-}$	19	$9 \cdot 11$	$9 \cdot 15$	H-3)		
	5α-androstane	18	9-26	9-22	H-6	$5 \cdot 32$	m(23)
[607	$5 \alpha-$ Androst.une-3 $3,6 \alpha, 16 \beta$-triol]				H.16	$4 \cdot 78$	$\mathrm{m}(12)$
608	$3 \beta, 6 \alpha, 16 \beta$-Triacetoxy-'	19	9•19	9-12	H-3)		
	$5 \boldsymbol{\alpha}$-androstane \ddagger	18	9-12	9•13	H-6		$\mathrm{m}(2$
[609 5 α-Androstane $38,6 \alpha, 17 \alpha-$ triol $]$					H-16	4.88	$\mathrm{m}(16)$
610	$3 \beta, 6 \alpha, 17 \alpha$-Triacetoxy ${ }^{-}$	19	$9 \cdot 10$	9-15)	H-3	$5 \cdot 33$	
	5 α-androstane \ddagger	18	$9 \cdot 27$	$9 \cdot 26$	H-6		$6(8,8,4)$
[611 5 \% α-Androstane- $3 \beta, 6 \alpha, 17 \beta$-triol $]$					H-17	$5 \cdot 20$	$\mathrm{d}(6 \cdot \overline{5})$
			$9 \cdot 11$	$9 \cdot 12$	H-3		
	5α-androstane \ddagger	18	$9 \cdot 22$	9.21	H.6	5•33	$\mathrm{m}(22)$
					H-17		
613	$3 \beta, 6 \beta, 15 \sim$-Triacetox ${ }^{-}$-	19	$8 \cdot 98$	9.01	H-3)	$5 \cdot 16$	
	$\bar{\omega} \alpha$-androstane \dagger	18	$9 \cdot 18$	$9 \cdot 16$	H-15)	$5 \cdot 16$	
[614	5α-Androstane-3 $3,6 \beta, 16 \beta$-triol				H-6	$5 \cdot 02$	
815	$3 \beta, 6 \beta, 16 \beta$-Triacetoxy-	19	8.97	$9 \cdot 99$			
	$\bar{\sigma} \alpha$-androstane \ddagger	18	9.07	$9 \cdot 97$			
616	$\overline{5} \alpha$-Androstane- $3 \beta, 7 \alpha, 16 \beta$ -	19	9.18	9.18	H-3	6.37	$\mathrm{m}(20)$
	triol	18	9.05	9.04	H-7	$6 \cdot 15$	$\mathrm{m}(7)$
					H-16	$5 \cdot 57$	$\mathrm{m}(18)$
$\begin{array}{r} {[617} \\ 618 \end{array}$	5α-Androstane-s $\beta, 7 \beta, 17 \beta$-triol $]$						
	$3 \beta, 7 \beta, 17 \beta$-Triacetoxy-	19	9.12	$9 \cdot 10$	H-3		
	$\overline{\mathrm{j}} \boldsymbol{\alpha}$-androstane \dagger	18	$9 \cdot 19$	$9 \cdot 18$	$\left.\begin{array}{l} \mathrm{H}-7 \\ \mathrm{H}-17 \end{array}\right\}$	$5 \cdot 38$	$\mathrm{m}(22)$
619	$31 \beta, 11 \beta, 17 \beta$-Triacetox 9 -	19	9.06	9.07	H-3	$5 \cdot 33$	m
	$5 \boldsymbol{\alpha}$-androstane	18	$9 \cdot 17$	$9 \cdot 14$	H-17	$5 \cdot 36$	$t(8)$
					H-11	4.86	$6(10,10,5)$
620	$\overline{\mathrm{j}} \alpha$-Androstane-3 $\beta, 11 \beta, 16 \beta-$	19	8.94	8.94	H-3	6.40	$7(10,10,5,5)$
	triol	18	8.81	$8 \cdot 80$	$\underset{\mathrm{H}-16}{\substack{\text { H }}}$	${ }_{5}^{5 \cdot 66}$-60	$\mathrm{m}(20)$
[621	$3 \alpha, 11 \alpha, 17 \beta$-Trihydroxy- 5α-androstan-6-one						
622	$3 \alpha, 11 \alpha, 17 \beta$-Triacetoxy ${ }^{\text {- }}$	19	$9 \cdot 15$	$9 \cdot 15$	H-3	$4 \cdot 90$	$\mathrm{m}(8)$
	$5 x$-androstan-6-one	18	$9 \cdot 12$	9.13	H-11	$4 \cdot 82$	$6(10,10,5)$
					H-17	$5 \cdot 32$	t(8)
623	3F,186-Diacetoxy-5-	19	8.80	$8 \cdot 70$	H-3		$\mathrm{m}(25)$
	hydrox $\begin{aligned} & \text { one } \\ & \text { a } \\ & \text { c }\end{aligned}$-androstan-11-	18	$9 \cdot 15$	$9 \cdot 16$	H-16	4.80	$\mathrm{m}(20)$
624	$3 \beta, 5,16 \beta$-Trihydrox ${ }^{-}$	19	8.81	8.77	H-3	$6 \cdot 46$	$\mathrm{m}(20)$
	5α-androstan 11 -one	18	$9 \cdot 09$	$9 \cdot 98$	H-16	$5 \cdot 49$	$\underline{\mathrm{q}}$ ($\overline{7}$)
625	$3 \beta, 7 \beta, 16 \beta$-Trihydroxy-	19	8.92	8.92	H-3	6.56	m(2
	5α-androstan-11-one	18	$9 \cdot 08$	9.05	H-7	5.56	m(2)
[626	${ }_{3}^{3} \beta, 7 \beta, 17 \alpha$-Trihydroxy-5 α-androstan-11-one]				H-16	$5 \cdot 52$	$\mathrm{q}(7)$
627	$3 \beta, 7 \beta, 17 \alpha \cdot$ Triacetoxy- $5 \alpha-$	19	8.89	8.91			
	androstan-11-one \dagger	18	$9 \cdot 26$	$9 \cdot 26$	$\underset{\substack{\mathrm{H}-7 \\ \mathrm{H}-17}}{\substack{\text { d }}}$	5.28 5.28	m $\mathrm{d}(6)$
628	$5,11 \alpha, 17 \beta$-Trih ydroxy- 5α -	19	9.08	$9 \cdot 10$			
	androstan 6 -one \dagger	18	$9 \cdot 26$	$9 \cdot 25$			
629	$11 \alpha, 17 \beta$-Diacetoxy-5-	19	9-11	$9 \cdot 12$	H-11	4.94	$6(10,10,5)$
	hydrox $y-5 \alpha$-androstan-6one	18	$9 \cdot 18$	$9 \cdot 16$	H-17	$5 \cdot 35$	t(8)
630	$6 \alpha, 11 \alpha, 16 \beta$-Trihydroxy- $\delta \alpha$ -	19	8.83	$8 \cdot 81$			
	androstan-3.one	18	$8 \cdot 99$	$8 \cdot 99$			
631	$6 \alpha, 11 \alpha, 16 \beta$-Triacetox ${ }^{-5}$ - α -	19	8.81	$8 \cdot 85$	H-6	$5 \cdot 29$	6(10,10,5)
	androstan-3-one	18	$9 \cdot 02$	$9 \cdot 94$	$\substack{\mathrm{H}-11 \\ \mathrm{H}-16}$	$4 \cdot 82$	$\mathrm{m}(30)$
632	6 $6,11 \alpha, 16 \beta$-Trihydroxy-5 α -	19	$8 \cdot 66$	8.61			
	$\overline{5} \alpha$-androstan-3-one	18	8.97	$8 \cdot 95$			
633	$6 \beta, 11 \alpha, 16 \beta$-Triacetoxy $\cdot 5 \alpha-$	19	8.79	$8 \cdot 72$	H-6	$5 \cdot 12$	q(3)
	androstan-3-one	18	8.98	8.98	$\left.\begin{array}{l} \mathrm{H}-11 \\ \mathrm{H}-16 \end{array}\right\}$	4.78	$\mathrm{m}(30)$

$* \Delta_{1}{ }^{3}+0.56(\mathrm{H}-19)$ and $+0.44(\mathrm{H}-18), \quad \tau_{2}($ calc. $)$ figures from substituent values which will appear in Part IX. \ddagger Not fully characterised. § Obtained as
a Ref. 2.

EXPERIMENTAL

For general directions, references to standard procedures, and the meanings of abbreviations see the preceding paper. ${ }^{1}$ Where compounds with serial numbers below 543 are stated to have been identified by mixed m.p., the original preparations are contained in, or can be found from, the papers cited.
5α-Androstane-2,16-dione (no. 33). ${ }^{6}$ (a) Incubation: 480 mg in $\mathrm{Me}_{2} \mathrm{SO}(72 \mathrm{ml}), 12$ flasks, medium $\mathrm{B}, 6 \mathrm{~d}$, extraction $\mathrm{I} \longrightarrow \mathrm{I} \cdot 27 \mathrm{~g}$ combined extracts. P.l.c. [1 large plate, $3 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}(7: 3)$] gave, in order of decreasing R_{F}, $2 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-16-one (no. 569) (25 mg), as an oil, $m / e 306\left(M^{+}\right)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3588$ and $1734 \mathrm{~cm}^{-1}$; $2 \alpha, 7 \alpha$-dihydroxy-5 α-androstan-16-one (no. 239)* (277 mg), m.p. $209-212^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-175^{\circ}$ (c $1 \cdot 0$) (Found: $\mathrm{C}, 74.4 ; \mathrm{H}, 9.75 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 . 5}$; H , $9.9 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1739 \mathrm{~cm}^{-1}$; and $7 \alpha-h y d r o x y$ 5α-androstane-2,16-dione (no. 196)* (36 mg), m.p. 188 191° (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}-146^{\circ}(c 0.45)$ (Found: C , $74 \cdot 8 ; \quad \mathrm{H}, 8.9 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, \mathbf{9 . 3} \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3617,1739$, and $1703 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of $2 \alpha, 6 \alpha$-dihydroxy- 5α -androstan-16-one (no. 569) (50 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-2,6,16-trione (no. 68) (38 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p} .25 \mathrm{I}-252^{\circ}$. Oxidation of $2 \alpha, 7 \alpha$-dihydroxy- 5α-androstan-16-one (no. 239) (25 mg) gave 5α-androstane-2,7,16-trione (no. 69) * (19 mg), m.p. $270-272^{\circ}$ (decomp.) (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{p}}-225^{\circ}$ (c 0.5) (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, 8.95 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 8.7 \%)$, $\nu_{\max .}\left(\mathrm{CHCl}_{3}\right) 1740$ and $1707 \mathrm{~cm}^{-1}$. Oxidation of 7α-hydroxy- 5α-androstane- 2,16 -dione (no. 196) (50 mg) gave the 2,7,16-trione (no. 69) (39 mg).
5α-Androstane-2,17-dione (no. 34). ${ }^{6}$ (a) Incubation: $1 \cdot 0$ g in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium $\mathrm{B}, 6 \mathrm{~d}$, extraction $\mathrm{I} \longrightarrow 1.94 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 100 g$)$. Petrol- $\mathrm{Et}_{2} \mathrm{O}(49: \mathrm{l})$ eluted a mixture (277 mg) [$2 \alpha, 7 \alpha$-dihydroxy- 5α-androstan-17-one (no. 570) and $2 \alpha, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 571) in a $3: 1$ ratio], double m.p. 211-214 and $221-224^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) (Found: $\mathrm{C}, 74 \cdot 6 ; \quad \mathrm{H}, 10 \cdot 0 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%)$, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and 1732 cm^{-1}, which could not be separated by repeated p.l.c. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(99: 1)$ gave $2 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-17one (no. 238) * (18 mg), m.p. 193-195 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathbf{D}}+90^{\circ}(c 0 \cdot 3)$ (Found: C, 74.2; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3601$ and $1737 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of the mixture of 2,7-dihydroxy-I7-ketones (nos. 570 and 571) (100 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-2,7,17-trione (no. 70) * (85 mg), m.p. 216-218 8° (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+11^{\circ}$ (c 0.5) (Found: $\mathrm{C}, 75.2 ; \mathrm{H}, 8.65 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\max .} 1743$ and $1717 \mathrm{~cm}^{-1}$. Oxidation of $2 \alpha, 6 \alpha$-dihydroxy- 5α-androstan-17-one (no. 238) gave 5α -androstane-2,6,17-trione (no. 483), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{7} \mathrm{~m} . \mathrm{p} .196-198^{\circ}$.
17β-Hydroxy-5 α-androstan-2-one (no. 180). ${ }^{6}$ (a) Incubation: $1 \cdot 0 \mathrm{~g}$ in $\mathrm{Me}_{2} \mathrm{SO}(150 \mathrm{ml}), 25$ flasks, medium $\mathrm{B}, 6 \mathrm{~d}$, extraction $I \longrightarrow 2 \cdot 1 \quad g$ combined extracts. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 100 g$)$. Petrol- $\mathrm{Et}_{2} \mathrm{O}$ (1: l) gave s.m. (170 mg), m.p. and mixed m.p. $179-180^{\circ}$. Petrol$\mathrm{Et}_{2} \mathrm{O}(\mathrm{l}: 9)$ gave a gum (300 mg) which was purified by
${ }^{6}$ J. E. Bridgeman, C. E. Butchers, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, and P. D. Woodgate, J. Chem. Soc. (C), 1970, 244.
p.l.c. $\left[1\right.$ large plate, $4 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(7: 3)\right]$ to give $6 \alpha, 17 \beta$-dihydroxy- 5α-androstan-2-one (no. 280) (130 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{7}$ m.p. $235-238^{\circ}$.
$5 \alpha-$ Androstane-3,6-dione (no. 35). ${ }^{8}$ (a) Incubation: 670 mg in EtOH (34 ml), 17 flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction $($ II $) \rightarrow 800 \mathrm{mg}$ mycelial extract and 1.4 g broth extract. Filtration of the mycelial extract in $\mathrm{Et}_{2} \mathrm{O}$ through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 20 g) gave s.m. (40 mg). The broth extract, in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ ($\mathrm{I}: \mathrm{l}$), was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (10% deactivated: 20 g) and then separated by p.l.c. [2 large plates, $\left.2 \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(49: 1)\right]$ to give, in order of decreasing R_{F}, 16 β-hydroxy-5 α-androstane-3,6-dione (no. 563) (62 mg), m.p. $164-166^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-20^{\circ}$ (c 1.0), $m / e 304 \cdot 205\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}\right.$ requires $\left.M^{+}, 304 \cdot 204\right)$, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right)$ 3610 and $1710 \mathrm{~cm}^{-1}$; $16 x$-hydroxy- 5α-androstane-3,6-dione (no. 56 I) (156 mg), m.p. $198-200^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-19^{\circ}(c \quad 0 \cdot 3)$ (Found: C , $75 \cdot 2 ; \mathrm{H}, \mathbf{9 . 2} . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, \mathbf{9 . 3} \%$), $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and 1710 $\mathrm{cm}^{-1} ; 3 \beta, 16 \beta$-dihydroxy-5 α-androstan-6-one (no. 262) * (175 mg), m.p. $186-187^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-34^{\circ}$ (c 0.4) (Found: $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 10 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}$, $9.9 \%), \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and $1712 \mathrm{~cm}^{-1}$; and $3 \beta, 16 \alpha-$ dihydroxy-5 -androstan-6-one (no. 261) * (147 mg), m.p. 201-203 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-32^{\circ}(c \quad 0 \cdot 3)$ (Found: C , $74 \cdot 6 ; \quad \mathrm{H}, 10 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1705 \mathrm{~cm}^{-1}$.
(b) Transformations: Acetylation $\left(\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} ; 2: 1\right.$, for 2 d) of $3 \beta, 16 \alpha$-dihydroxy- 5α-androstan-6-one (no. 261) gave $3 \beta, 16 \alpha$-diacetoxy- 5α-androstan-6-one (no. 577), m.p. $136-138^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-41^{\circ}(c 0.6)$ (Found: $\mathrm{C}, 70.9 ; \mathrm{H}, 8.7 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max. }} 1740$ and $1723 \mathrm{~cm}^{-1}$.

A portion (150 mg) of a crude broth extract in $\mathrm{Me}_{2} \mathrm{CO}$ was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ and the product (120 mg) was purified by p.l.c. to give 5α-androstane-3,6,16-trione (no. 76) * (80 mg), m.p. 224-226 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[a]_{\mathrm{D}}-158^{\circ}(c \quad 0.5)$ (Found: $\mathrm{C}, 75 \cdot 7 ; \mathrm{H}, 8.6 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\max .} 1749$ and $1719 \mathrm{~cm}^{-1}$.
$6 \alpha-H y d r o x y-5 \alpha-$ androstan-3-one (no. 551).9 (a) Incubation: 600 mg in EtOH (30 ml), 15 flasks, medium B, 2 d , extraction II \longrightarrow mycelial and broth extracts. The mycelial extract contained no s.m. and was discarded. Filtration of the broth extract in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(9: 1)$ through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 20 g$)$ followed by p.l.c. [2 large plates, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}$ (16:4:1)] gave, in order of decreasing $R_{\mathrm{F}}, 6 \alpha, \mathrm{ll} \alpha$-dihydroxy-5 α-androstan- 3 one (no. 586) (88 mg), m.p. $137-\mathrm{l} 38$ and $180-182^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}} 0^{\circ}(c 0.9)$ (Found: C, $74 \cdot 1$; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%\right)$, $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3590$ and $1703 \mathrm{~cm}^{-1} ; 6 \alpha, 17 \alpha$-dihydroxy-5 α-androstan-3-one (no. 589) (45 mg), m.p. $176-178^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+22^{\circ}$ ($c 0 \cdot 2$) (Found: $\mathrm{C}, 74 \cdot 3 ; \mathrm{H}, 9.8 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74 \cdot 5 ; \mathrm{H}, 9.9 \%)$, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and $1708 \mathrm{~cm}^{-1} ; 6 \alpha, 16 \beta-$ dihydroxy-5 α-androstan-3-one (no. 588) (172 mg), m.p. $17 \mathrm{I} \cdot 5-173 \cdot 5^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+26^{\circ}$ (c $1 \cdot 0$) (Found: $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 9.8 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, 9.9%), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3605$ and $1705 \mathrm{~cm}^{-1} ; 6 \alpha, 16 \alpha$-dihydroxy$5 \alpha$-androstan-3-one (no. 587) (190 mg), m.p. 227-228 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{n}$ (EtOH) $+37^{\circ}(c \quad 0 \cdot 8)$ (Found: $\mathrm{C}, 74.55 ; \mathrm{H}, 9.9 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1708 \mathrm{~cm}^{-1}$; and $6 \alpha, 11 \alpha, 16 \beta$-trihydroxy-
${ }^{7}$ A. M. Bell, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and W. E. Müller, J.C.S. Perkin I, 1972, 2759.
${ }^{8}$ A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, V. Kumar, G. D. Meakins, and V. E. M. Thomas, J.C.S. Perkin I, 1972, 492.
${ }^{9}$ Unpublished work.
5α-androstan-3-one (no. 630) (25 mg), m.p. 255-257 ${ }^{\circ}$ (from $\left.\mathrm{MeOH}-\mathrm{Me}_{2} \mathrm{CO}\right),[\alpha]_{\mathrm{D}}(\mathrm{EtOH})-10^{\circ}(c 0 \cdot 2)$ (Found: C, 70.7; $\mathrm{H}, 9 \cdot 4 . \mathrm{C}_{10} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 70 \cdot 8 ; \mathrm{H}, 9 \cdot 4 \%\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $3600 \mathrm{~cm}^{-1}$.
(b) Transformations: On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ $6 \alpha, 11 \alpha$-dihydroxy- 5α-androstan-3-one (no. 586) gave 5α -androstane-3,6,11-trione (no. 72), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p}$. 188-190 ; $6 \alpha, 17 \alpha$-dihydroxy5α-androstan- 3 -one (no. 589) gave 5α-androstane-3,6,17trione (no. 78), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{2}$ m.p. 194-196 ; $6 \alpha, 16 \beta$ - (no. 588) and $6 \alpha, 16 \alpha$-dihydroxy5α-androstan- 3 -one (no. 587) gave 5α-androstane- $3,6,16$ trione (no. 76), m.p. and mixed m.p. 223-225 ; and $6 \alpha, 11 \alpha, 16 \beta$-trihydroxy- 5α-androstan- 3 -one (no. 630) gave 5α-androstane-3,6,11,16-tetraone (no. 544), m.p. 279-281 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-116^{\circ}(c 0 \cdot 1)$ (Found: C, 71.7; $\mathrm{H}, \quad 7.9 . \quad \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 72 \cdot 1 ; \mathrm{H}, 7.65 \%$), $\nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) \quad 1743$ and $1710 \mathrm{~cm}^{-1}$. Acetylation of the tri-hydroxy-ketone (no. 630) gave $6 \alpha, 11 \alpha, 16 \beta$-triacetoxy- $5 \alpha-$ androstan-3-one (no. 631), m.p. 199-201.5 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[x]_{\mathrm{D}}-4^{\circ}(c 0 \cdot 2)$ (Found: C, 67.2; H, 8.3. $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.9 ; \mathrm{H}, 8.1 \%) v_{\text {max. }} 1733$ and $1712 \mathrm{~cm}^{-1}$.
$6 \beta-H y d r o x y-5 \alpha$-androstan-3-one (no. 533). ${ }^{9}$ (a) Incubation: 600 mg in EtOH (30 ml), 15 flasks, medium B, 2 d , extraction II \longrightarrow mycelial and broth extracts. The mycelial extract contained no steroidal material and was discarded. The broth extract, in $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$, was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (10% deactivated; 20 g). P.l.c. [2 large plates, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}$ ($16: 4: \mathrm{I}$)] gave, in order of decreasing $R_{\mathrm{F}}, 6 \beta, 11 \alpha$-dihydroxy- 5α-androstan- 3 one (no. 281) (91 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p}$. $194-195^{\circ} ; 6 \beta, 16 \beta$-dihydroxy- 5α-androstan3 -one (no. 591) (250 mg), m.p. 214.5-215.5 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}$ - $11:(c 0.9)$ (Found: C, 74.7; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{30}{ }^{-}$ O_{3} requires C, $74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max. }} 3610$ and $1703 \mathrm{~cm}^{-1}$; $6 \beta, 11 \alpha, 16 \beta$-trihydroxy- 5α-androstan-3-one (no. 632) (202 mg), m.p. $259-260^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}$), $[x]_{\mathrm{D}}$ (EtOH) - 31° (c 0.4) (Found: C, 70.8; H, 9.3. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C , $70.8 ; \mathrm{H}, 9.4 \%$) ; and 5α-androstane- $3 \beta, 6 \beta, 16 \beta$-triol (no. 614) (14 mg), m.p. 263- 266° (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}$), $[\alpha]_{\mathrm{D}}(\mathrm{MeOH})$ $-20.5^{\circ}(c 0.4)$ (Found: C, 73.7; H, 10.35. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 . 0} ; \mathrm{H}, \mathbf{1 0 . 5} \%$).
(b) Transformations: Acetylation of the trihydroxyketone (no. 632) gave $6 \beta, 11 \alpha, 16 \beta$-triacetoxy- 5α-androstan3 -one (no. 633), m.p. 166-169 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $m / e 448\left(M^{+}\right), \nu_{\text {max }} 1733$ and $1712 \mathrm{~cm}^{-1}$; the triol (no. 614) gave $3 \beta, 6 \beta, 16 \beta$-triacetoxy- $\tilde{\alpha} \alpha$-androstane (no. 615), an oil, $m / e 434\left(M^{+}\right)$. Oxidation of the trihydroxy-ketone (no. 632) gave 5α-androstane-3,6,11,16-tetraone (no. 544), m.p. and mixed m.p. 279-281 ${ }^{\circ}$. Oxidation of the $3 \beta, 6 \beta, 16 \beta-$ triol (no. 614) and of the $6 \beta, 16 \beta$-dihydroxy- 3 -ketone (no. 591) gave 5α-androstane-3,6,16-trione (no. 76), m.p. and mixed m.p. 222-224 .

3ß-Hydroxy-5 -androstan-6-one (no. 147).9 (a) Incubation: 100 mg in $\mathrm{Me}_{2} \mathrm{SO}(12 \mathrm{ml}), 2$ flasks, medium B, 5 d , extraction II $\longrightarrow 200 \mathrm{mg}$ combined extracts. P.l.c. [1 medium plate, $1 \times \mathrm{C}_{6} \mathrm{H}_{6}-$ EtOAc ($1: 1$)] gave $3 \beta, 16 \beta-$ dihydroxy- 5α-androstan-6-one (no. 262) (higher R_{F}) (19 mg), m.p. and mixed m.p. 185-187 ${ }^{\circ}$, and $3 \beta, 16 \alpha$-dihydroxy5α-androstan-6-one (no. 261) (lower R_{F}) (45 mg), m.p. and mixed m.p. 197-199 .
$5 \alpha-$ Androstane- $3 \beta, 6 \alpha$-diol (no. 568). ${ }^{9}$ (a) Incubation: 600 mg in $\mathrm{EtOH}(30 \mathrm{ml}$), 15 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 400 \mathrm{mg}$ mycelial extract and 703 mg broth extract. P.l.c. $\left[\mathrm{l}\right.$ large plate, $\left.\mathrm{I} \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(49: 1)\right]$ of the
mycelial extract gave $5 . m$. $(33 \mathrm{mg})$. The broth extract was separated by p.l.c. [3 large plates, $3 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-$ EtOH (8:4:1)] to give, in order of decreasing $R_{\mathrm{F}}, 5 \alpha-$ androstane-3 $3,6 \alpha, 17 \alpha$-triol (no. 609) (58 mg), m.p. $280-281^{\circ}$ (from $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}(\mathrm{EtOH})+19^{\circ}(c 0 \cdot 6)$ (Found: C, $74 \cdot 1 ; \mathrm{H}, 10 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 10.5 \%$); 5α-androstane- $3 \beta, 6 \alpha, 16 \beta$-triol (no. 607) (100 mg), m.p. 231$232^{\circ}$ (from $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}(\mathrm{EtOH})+14^{\circ}(c 0 \cdot 5)$ (Found: C, $74 \cdot 1 ; \mathrm{H}, 10.3$. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 10.5 \%$); and 5α-androstane- $3 \beta, 6 \alpha, 16 \alpha-$ triol (no. 605) (220 mg), m.p. 237-238 ${ }^{\circ}$ (from $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}(\mathrm{EtOH})+37^{\circ}(c 0 \cdot 1)$ (Found: C, 74.2; H, 10.5. $\quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 0$; H, 10.5%).
(b) Transformations: Acetylation of the $3 \beta, 6 \alpha, 17 \alpha$-triol (no. 609) and of the $3 \beta, 6 \alpha, 16 \beta$-triol (no. 607) gave $3 \beta, 6 \alpha, 17 \alpha-$ triacetoxy- 5α-androstane (no. 610) and $3 \beta, 6 \alpha, 16 \beta$-triacetoxy$5 \alpha$-androstane (no. 608), respectively, as oils, m/e 314 $\left(M^{+}-2 \mathrm{AcOH}\right), \quad \nu_{\max } 1732 \mathrm{~cm}^{-1}$. Acetylation of the $3 \beta, 6 \alpha, 16 \alpha-$ triol (no. 605) gave $3 \beta, 6 \alpha, 16 \alpha-$ triacetoxy- $5 \alpha-$ androstane (no. 606), m.p. 70-75 (from petrol), $[\alpha]_{\mathrm{D}}+14^{\circ}$ (c $\mathrm{l} \cdot \mathrm{I}$) (Found: C, 68.9; H, 8.9. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6}$ requires C , $69.1 ; \mathrm{H}, 8.8 \%),{ }_{\text {max }} 1732 \mathrm{~cm}^{-1}$. Oxidation of the $3 \beta, 6 \alpha, 17 \alpha$-triol (no. 609) (10 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,6,17-trione (no. 78) (9 mg), m.p. and mixed m.p. 193-195 . Oxidation of the $3 \beta, 6 \alpha, 16 \beta-$ and $3 \beta, 6 \alpha-16 \alpha$-triols (nos. 607 and 605) (30 mg) gave $5 \alpha-$ andro-stane-3,6,16-trione (no. 76) (25 mg), m.p. and mixed m.p.

$223-225^{\circ}$.

$5 \alpha-A n d r o s t a n e-3 \beta, 6 \beta-d i o l$ (no. 220). ${ }^{9}$ (a) Incubation: 120 mg in EtOH (6 ml), 3 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 237 \mathrm{mg}$ mycelial extract and 99 mg broth extract. P.l.c. [1 large plate, $1 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}(16: 5: 1)$] of the mycelial extract gave s.m. $(20 \mathrm{mg})$. Separation of the broth extract by p.1.c. [2 small plates, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}(12: 8: 1)\right]$ afforded 5α-androstane- $3 \beta, 6 \beta, 16 \beta-$ triol (no. 614) (higher R_{F}) (40 mg), m.p. and mixed m.p. $263-266^{\circ}$, and material (18 mg) which was acetylated $\left(\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$; $2: 1$, for 2 d) to give $3 \beta, 6 \beta, 15 \alpha$-triacetoxy$5 \alpha$-androstane (no. 613) as an oil, $m / e 434\left(M^{+}\right)$, $\nu_{\text {max }}$ $1732 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of the $3 \beta, 6 \beta, 16 \beta$-triol (no. 614) (8 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-$3,6,16$-trione (no. 76) (8 mg). The $3 \beta, 6 \beta, 15 \alpha$-triacetate (no. 613) (30 mg) was boiled under reflux with $\mathrm{NaOH}(40 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})-\mathrm{MeOH}(6 \mathrm{ml})$. The resulting $3 \beta, 6 \beta, 15 \alpha$-triol was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to 5α-androstane-3,6,15-trione (no. 54 I) (10 mg), m.p. 218-219 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+22^{\circ}\left(\begin{array}{llll}c & 0.3\end{array}\right)$ (Found: C, 75.3; H, 8.7. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1738$ and $1710 \mathrm{~cm}^{-1}$.

Androst-4-ene-3,6-dione (no. 540). ${ }^{11}$ (a) Incubation: 880 mg in $\mathrm{EtOH}(44 \mathrm{ml}), 22$ flasks, medium B, 4 d , extraction II $\longrightarrow 438 \mathrm{mg}$ mycelial extract and 898 mg broth extract. P.l.c. [l large plate, $1 \times \mathrm{Et}_{2} \mathrm{O}$] of the mycelial extract gave s.m. (173 mg). P.l.c. [3 large plates, $\mathrm{I} \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-$ EtOH (16:4:1)] of the broth extract gave several unidentified products (total 64 mg) and, in order of decreasing $R_{\mathrm{F}}, 3 \beta, 16 \beta$-dihydroxyandrost-4-en-6-one (no. 581) (53 mg) as an oil, $m / e 304\left(M^{+}\right)$; 3 β,16 α-dihydroxyandrost-4-en-6-one (no. 578) (240 mg), m.p. 198-200 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-34^{\circ}\left(\begin{array}{c}c \\ 0.9)\end{array}\right.$ (Found: C, $74.7 ; \quad \mathrm{H}, 9 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9.3 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600,1683$, and

[^4]$1630 \mathrm{~cm}^{-1}$; and $3 \beta, 16 \alpha$-dihydroxy- 5α-androstan-6-one (no. 261) (20 mg), m.p. and mixed m.p. 199- 201°.
(b) Transformations: On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$, $3 \beta, 16 \beta$ - and $3 \beta, 16 \alpha$-dihydroxy- 5α-androst- 4 -en- 6 -one (nos. 581 and 578) (30 mg) gave androst-4-ene-3,6,16-trione (no. 77) * (25 mg), m.p. $181-182^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\text {p }}$ $-131^{\circ}(c 0.6)$ (Found: C, 75.9 ; H, 8.0. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, $76.0 ; \mathrm{H}, 8.05 \%$), $\lambda_{\text {max. }} 250 \mathrm{~nm}(\varepsilon 9000)$, $\nu_{\text {max. }} 1750$ and $1691 \mathrm{~cm}^{-1}$.
$6 \beta-H y d r o x y a n d r o s t-4-e n-3-o n e\left(\right.$ no. 160)..8 (a) Incubation: 50 mg in $\mathrm{Me}_{2} \mathrm{SO}(6 \mathrm{ml})$, 1 flask, medium B, 5 d, extraction $\mathrm{II} \longrightarrow 100 \mathrm{mg}$ combined extracts. P.l.c. [1 medium plate, $2 \times \mathrm{C}_{6} \mathrm{H}_{6}$-EtOAc (2:1)] gave, in order of decreasing R_{F}, s.m. (2 mg); 6ß,16 β-dihydroxyandrost-4-en-3-one (no. 285) * (31 mg), m.p. $188-190^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-2 \cdot 5^{\circ}$ (c 0.4) (Found: $\mathrm{C}, \mathbf{7 4 \cdot 6} \mathrm{H}, \mathbf{9 . 2} . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C , $75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }} 3600,1679$, and $1620 \mathrm{~cm}^{-1}$; and $6 \beta, 11 \alpha, 16 \beta$-trilhydroxyandrost-4-en- 3 -one (11 mg), m.p. $226-228^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Et}_{2} \mathrm{O}$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1}$.
(b) Transformation: Oxidation of $6 \beta, 16 \beta$-dihydroxy-androst-4-en-3-one (no. 285) gave androst-4-ene-3,6,16trione (no. 77), m.p. and mixed m.p. $178-180^{\circ}$.
5α-Androstane-3,7-dione (no. 36). ${ }^{8}$ (a) Incubation: 160 mg in $\mathrm{Me}_{2} \mathrm{SO}(24 \mathrm{ml}), 4$ flasks, medium B, 3 d , extraction $\mathrm{II} \longrightarrow 300 \mathrm{mg}$ combined extracts. P.l.c. [l large plate, $1 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(2: 1)\right]$ gave, in order of decreasing R_{F}, s.m. (7 mg); 16ß-hydroxy-5 α-androstane-3,7-dione (no. 207) * (5 I mg), m.p. $185-186^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-48^{\circ}(c \mathrm{I} \cdot 0)$ (Found: C, 75.2; H, 9.1. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }} 1710 \mathrm{~cm}^{-1}$; and $3 \beta, 16 \beta-$ dihydroxy-5 α-androstan-7-one (no. 263)* (14 mg), m.p. $235-237^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{p}}-65^{\circ}$ (c $1 \cdot 0$) (Found: C, $74 \cdot 5 ; \mathrm{H}, \mathbf{9 . 6} . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{\mathbf{3}}$ requires $\mathrm{C}, \mathbf{7 4 . 5} ; \mathrm{H}, \mathbf{9 . 9} \%$), $\nu_{\max }$. 3610 and $1715 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of 16β-hydroxy- 5α -androstane-3,7-dione (no. 207) and of $3 \beta, 16 \beta$-dihydroxy5α-androstan-7-one (no. 263) gave 5α-androstane-3,7,16trione (no. 82), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. 240-242 ${ }^{\circ}$.
7α-Hydroxy-5 α-androstan-3-one (no. 161). ${ }^{8}$ (a) Incubation: 160 mg in $\mathrm{Me}_{2} \mathrm{SO}(24 \mathrm{ml})$, 4 flasks, medium B, 6 d , extraction III \longrightarrow total extract, which was purified by p.l.c. [1 medium plate, $1 \times$ petrol-EtOAc ($4: 1$)] to give $7 \alpha, 16 \beta$-dihydroxy-5 α-androstan-3-one (no. 592) (higher R_{F}) (55 mg), m.p. $203-204^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-\mathbf{9}^{\circ}(c 0 \cdot 6)$ (Found: C, $74.7 ; \mathrm{H}, 10.0 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, $9.9 \%), \nu_{\text {nax. }} 3610$ and $1710 \mathrm{~cm}^{-1}$, and 5α-androstane$3 \beta, 7 \alpha, 16 \beta$-triol (no. 616) (lower R_{F}) (40 mg), m.p. 170-172 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ - $14^{\circ}(c \mathrm{l} \cdot 0$) (Found: $\mathrm{C}, 73 \cdot 8$; $\mathrm{H}, 10.3 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74.0 ; \mathrm{H}, 10.5 \%\right)$, $\nu_{\text {max. }}$ $3610 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ of both products gave 5α-androstane-3,7,16-trione (no. 82), m.p. and mixed m.p. 240-242 .

7ß-Hydroxy-5 α-androstan-3-one (no. 383). ${ }^{8}$ (a) Incubation: 160 mg in $\mathrm{Me}_{2} \mathrm{SO}(24 \mathrm{ml}), 4$ flasks, medium B, 6 d , extraction III \longrightarrow total extract which was separated by p.l.c. [1 medium plate, $1 \times$ petrol-EtOAc $(4: 1)$] to give s.m. (50 mg) (higher R_{F}), and $7 \beta, 16 \beta$-dihydroxy- 5α -androstan-3-one (no. 593) (lower R_{F}) (60 mg), as an oil, $\nu_{\text {max. }} 3610$ and $1715 \mathrm{~cm}^{-1}$.

12 K. Heusler and A. Wettstein, Helv. Chim. Acta, 1952, 35, 284.
${ }_{13}$ D. H. Williams, N. S. Bhacca, and C. Djerassi, J. Amer. Chem. Soc., 1963, 85, 2810.

3ß-Hydroxy-5 α-androstan-7-one (no. 148).* Preparation: A mixture of $1.85 \mathrm{M}-\left(\mathrm{Bu}^{\mathrm{t}}\right)_{2} \mathrm{CrO}_{2}$ (prepared as in ref. 12 ; 200 ml), $\mathrm{AcOH}(65 \mathrm{ml})$, and $\mathrm{Ac}_{2} \mathrm{O}(25 \mathrm{ml})$ was added during 1 h to a vigorously stirred solution of androst-5-en- $3 \beta-\mathrm{yl}$ acetate (21.7 g) in $\mathrm{CCl}_{4}(145 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. The stirred mixture was boiled under reflux for 14 h , then cooled to $0^{\circ} \mathrm{C}$. Oxalic acid (43 g) in $\mathrm{H}_{2} \mathrm{O}(433 \mathrm{ml})$ was added during 40 min . After a further 15 min , more oxalic acid (30 g) was added, and the mixture was stirred until effervescence ceased. The material isolated with CCl_{4} was dissolved in CHCl_{3} and filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 20 g) to give 7 -oxoandrost-5-en-3 3 -yl acetate (no. 149) (18.6 g), m.p. 178-180 (from EtOH- $\mathrm{H}_{2} \mathrm{O}$) (lit., ${ }^{13} 179-180^{\circ}$). [Adding the $\left(\mathrm{Bu}^{t} \mathrm{O}\right)_{2} \mathrm{CrO}_{2}$ to a boiling solution of androst-$5-\mathrm{en}-3 \beta$-yl acetate ${ }^{12}$ results in a lower yield.]

Hydrogenation of 7 -oxoandrost-5-en- 3β-yl acetate (no. 149) (6 g) in EtOH (180 ml)-EtOAc (20 ml) for 1 h over $10 \% \mathrm{Pd}-\mathrm{C}(450 \mathrm{mg})$, followed by hydrolysis with KOH $(6 \mathrm{~g})-\mathrm{MeOH}(100 \mathrm{ml})$ under N_{2} for 20 h at $20^{\circ} \mathrm{C}$ gave 3β-hydroxy- 5α-androstan- 7 -one $(3.7 \mathrm{~g})$, m.p. $144-146^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) (lit., ${ }^{13}$ 128-129.5 ${ }^{\circ}$).
(a) Incubation: 600 mg in EtOH (30 ml), 15 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 460 \mathrm{ng}$ mycelial extract and 800 mg broth extract. The mycelial extract contained no s.m. and was discarded. The broth extract was separated by p.l.c. [2 large plates, $\left.3 \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(25: \mathrm{I})\right]$ to give $3 \beta, 16 \beta$-dihydroxy- 5α-androstan- 7 -one (no. 263) (higher R_{F}) (350 mg), m.p. and mixed m.p. $235-236^{\circ}$, and $3 \beta, 16 \alpha-$ dihydroxy-5 α-androstan-7-one (no. 579) (lower R_{F}) (140 mg), m.p. 203-204 (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-65^{\circ}$ (c 0.7) (Found: C, $74 \cdot 6 ; \mathrm{H}, 9 \cdot 7 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9 \cdot 9 \%$), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1705 \mathrm{~cm}^{-1}$.
(b) Transformation: Oxidation of the $3 \beta, 16 \alpha$-dihydroxy7 -ketone (no. 579) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,7,16-trione (no. 82), m.p. and mixed m.p. 240-242 ${ }^{\circ}$.
5α-Androstane-3,11-dione (no. 37). ${ }^{14}$ (a) Incubation: 1 g in EtOH (50 ml), 25 flasks, medium B, 2 d, extraction $\mathrm{II} \longrightarrow 400 \mathrm{mg}$ mycelial extract and 1.4 g broth extract. P.l.c. [1 large plate, $\mathrm{I} \times \mathrm{Et}_{2} \mathrm{O}$] of the mycelial extract gave s.m. $(42 \mathrm{mg})$. P.l.c. $\left[4\right.$ large plates, $\mathrm{I} \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-$ EtOH ($16: 5: 1$)] of the broth extract gave, in order of decreasing $R_{\mathrm{F}}, 16 \beta$-hydroxy-5 α-androstane-3,11-dione (no. 564) (555 mg), m.p. $174-175^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\text {D }}$ $+58^{\circ}(c 0 \cdot 7)$ (Found: C, 75.3; H, 9.1. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9.3 \%)$, $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and $1705 \mathrm{~cm}^{-1}$; $16 \alpha-h y d r o x y-5 \alpha$-androstane-3,11-dione (no. 562) (21 mg), m.p. $177-180^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+72^{\circ}$ (c $0 \cdot 2$) (Found: C, $74 \cdot 8 ; \mathrm{H}, 9 \cdot 3$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1708 \mathrm{~cm}^{-1} ; 9 \alpha, 16 \beta$-dihydroxy-5 $\alpha-$ androstane-3,11-dione (no. 604) (64 mg), m.p. 219-221 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+91^{\circ}(\mathrm{c} 1.0$) (Found: $\mathrm{C}, 71.35$; $\mathrm{H}, 8.8 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires C, $\left.71.2 ; \mathrm{H}, 8.8 \%\right)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 3600 and $1708 \mathrm{~cm}^{-1} ; 3 \beta, 16 \beta$-dihydroxy- 5α-androstan-11-one (no. 264) (204 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. $232-234^{\circ}$; and a mixture, separated by further p.l.c. [2 small plates, $\left.3 \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(97: 3)\right]$ into $9 \alpha, 16 \alpha$-dihydroxy-5 α-androstane-3,11-dione (no. 603) (higher R_{F}) (51 mg), m.p. $247-248.5^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $\left.\alpha_{-1}\right]_{\mathrm{D}}$ $+100^{\circ}(c 0.4)$ (Found: C, $71 \cdot 1 ; \mathrm{H}, 8.9 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71 \cdot 2 ; \mathrm{H}, 8.8 \%), v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1710 \mathrm{~cm}^{-1}$, and $3 \beta, 16 \alpha$-dihydroxy-5 α-androstan-11-one (no. 580) (lower R_{F}) (38 mg), m.p. $193-195^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+17^{\circ}$

[^5](c 1.0) (Found: $\mathrm{C}, 74.65 ; \mathrm{H}, \mathbf{1 0 . 0} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%), \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and $1703 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of 16 1 -hydroxy- $5 \alpha-$ androstane-3, I1-dione (no. 564), 16α-hydroxy- 5α-andro-stane- 3,11 -dione (no. 562), and $3 \beta, 16 \alpha$-hydroxy- 5α-andro-stan-ll-one (no. 580) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,11,16-trione (no. 85), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .172-174^{\circ}$. Huang-Minlon reduction of the l6 β-hydroxy-diketone (no. 564) (20 mg) gave 5α-androstan16β-ol (no. 134) (18 mg), m.p. (from MeOH) and mixed ${ }^{15}$ m.p. 108- 110°. Oxidation of the dihydroxy-diketones (nos. 603 and 604) gave 9α-hydroxy- $5 \alpha-$ androstane-3,11,16trione (no. 567), m.p. 215-216 (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{hexane}$), $[x]_{D}-72^{\circ}(c 0.45)$ (Found: C, 72.0; H, 8.1. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.7 ; \mathrm{H}, 8.2 \%)$, $v_{\text {max }} 1745$ and $1710 \mathrm{~cm}^{-1}$. This compound, whose properties are different from those of 5 -hydroxy- 5α-androstane-3,11,16-trione (no. 565) and $14 \alpha-$ hydroxy- 5α-androstane-3,11,16-trione, ${ }^{9}$ was unchanged by treatment with $2 \mathrm{~N}-\mathrm{NaOH}$ at $20^{\circ} \mathrm{C}$ for 5 h ; similar treatment of the 5α-hydroxy- and 14α-hydroxy-triketones gave solutions showing strong absorption at 240 nm .
3β-Hydroxy-5 α-androstan-11-one (no. 548). ${ }^{16}$ (a) Incubation: 1.4 g in $\mathrm{EtOH}(70 \mathrm{ml}$), 35 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial extract (which contained no s.m. and was discarded) and broth extract ($1 \cdot 6 \mathrm{~g}$). The broth extract, in $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: \mathrm{I})$, was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 10 g$)$ and separated by p.l.c. [5 large plates, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}$ ($16: 4: 1$)] to give, in order of decreasing $R_{\mathrm{F}}, 3 \beta$-hydroxy- 5α-androstane-11,16-dione (no. 559) (90 mg), m.p. 232-234 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $\left[\alpha_{\mathrm{D}} \mathrm{D}-119^{\circ}\right.$ (c 0.9) (Found: C, 75.2; H, $9 \cdot 1 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, \mathbf{9} \cdot 3 \%\right)$, $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3600,1745 , and $1708 \mathrm{~cm}^{-1} ; 3 \beta, 16 \beta$-dihydroxy- 5α-androstan-ll-one (no. 264) (500 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed m.p. 232- 234°; a mixture, separated by further p.l.c. $\left[3\right.$ small plates, $2 \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ (97:3)] into $3 \beta, 6 \alpha$-dihydroxy-5 α-androstan-11-one (no. 575) (138 mg), m.p. $176-177^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+82^{\circ}$ (c 0.2) (Found: C, 74.8; H, 9.8. $\quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, $9.9 \%)$, $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1705 \mathrm{~cm}^{-1}$, and $3 \beta, 16 \alpha-$ dihydroxy-5 α-androstan-11-one (no. 580) (164 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed m.p. 193-195 ; $3 \beta, 7 \beta, 16 \beta$-trihydroxy- 5α-androstan-11-one (no. 625) (117 mg), m.p. 240-241 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+81^{\circ}$ (c $1 \cdot 1$) (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, \mathbf{9 . 0} . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}$, $9 \cdot 4 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1703 \mathrm{~cm}^{-1} ; 3 \beta, 7 \beta$-dihydroxy$5 \alpha$-androstane-11,16-dione (no. 601) (102 mg), m.p. $203-$ 205° (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-84^{\circ}(c 0 \cdot 2), m / e 320 \cdot 1983$ $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}\right.$ requires $\left.M^{+}, 320 \cdot 1987\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610,1740$, and $1710 \mathrm{~cm}^{-1} ; 3 \beta, 5,16 \beta$-trihydroxy-5 α-androstan-11-one (no. 624) (81 mg), m.p. 225-226 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}$ (EtOH) $+42^{\circ}(c 0.5)$ (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, \mathbf{9 . 4} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $70.8 ; \mathrm{H}, 9.4 \%$) ; and $3 \beta, 7 \beta, 17 \alpha$-trihydroxy- 5α-androstan-ll-one (no. 626) (69 mg), m.p. 255-256.5 (from MeOH$\left.\mathrm{Me}_{2} \mathrm{CO}\right),[\alpha]_{\mathrm{p}}(\mathrm{EtOH})+65^{\circ}(c 0.3)$ (Found: C, $71 \cdot 0 ; \mathrm{H}$, $\mathbf{9 . 4 5} . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, \mathbf{7 0 \cdot 8} ; \mathrm{H}, \mathbf{9} \cdot \mathbf{4} \%$).
(b) Transformations: On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$, 3β-hydroxy- 5α-androstane-11,16-dione (no. 559) gave 5α -androstane-3,11,16-trione (no. 85), m.p. and mixed m.p. $174-176^{\circ} ; 3 \beta, 6 \alpha$-dihydroxy- 5α-androstan-11-one (no. 575) gave 5α-androstane-3,6,11-trione (no. 72), m.p. and mixed m.p. $188-190^{\circ}$; the $3 \beta, 7 \beta, 16 \beta$-trihydroxy-l1-ketone (no.
${ }^{15}$ I. M. Clark, A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and A. Pendlebury, J.C.S. Perkin I, 1972, 499.

625) and the $3 \beta, 7 \beta$-dihydroxy-11,16-diketone (no. 601) gave 5α-androstane-3,7,11,16-tetraone (no. 546), m.p. 260-263 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathbf{D}}-155^{\circ}(c 0 \cdot 1)$ (Found: C, $72 \cdot 2$; $\mathrm{H}, 7.5 . \quad \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 72 \cdot 1 ; \mathrm{H}, 7.65 \%\right)$, $\nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) \quad 1750$ and $1715 \mathrm{~cm}^{-1} ; 3 \beta, 5,16 \beta$-trihydroxy- $5 \alpha-$ androstan-Il-one (no. 624) gave 5 -hydroxy-5 α-androstane-3,11,16-trione (no. 565), m.p. 233-236 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), m/e 318.1828 ($\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\left.M^{+}, 318 \cdot 183 \mathrm{I}\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610,1743$, and $1710 \mathrm{~cm}^{-1}$; and $3 \beta, 7 \beta, 17 \alpha-$ trihydroxy-5 α-androstan-11-one (no. 626) gave $\tilde{\boldsymbol{\rho}} \alpha$-andro-stane-3,7,11,17-tetraone (no. 547), m.p. 239-241 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane $),[\alpha]_{\mathrm{p}}+63^{\circ}(c 0 \cdot 2)$ (Found: C, $72 \cdot 2 ; \mathrm{H}, 7 \cdot 7$. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, \mathbf{7 2 \cdot 1} ; \mathrm{H}, 7 \cdot 65 \%\right)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1742$ and $1710 \mathrm{~cm}^{-1}$. Acetylation of the $3 \beta, 5 \alpha, 16 \beta$-trihydroxy-ll-ketone (no. 624) and of the $3 \beta, 7 \beta, 17 \alpha$-trihydroxy-11ketone (no. 626) gave, respectively, $3 \beta, 16 \beta$-diacetoxy- 5 -hydroxy-5 α-androstan-11-one (no. 623), m.p. 193-195 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+2^{\circ}(c 0 \cdot 1)$ (Found: C, 67.6; $\mathrm{H}, 8.5 . \quad \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max. }} 3600$, 1740 , and $1710 \mathrm{~cm}^{-1}$, and $3 \beta, 7 \beta, 17 \alpha$-triacetoxy- $\boldsymbol{5} \alpha$-androstan-11-one (no. 627), m.p. $145-151^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}+27^{\circ}$ (c 0.1) (Found: C, $64 \cdot 45 ; \mathrm{H}, 8.2 . \quad \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 64 \cdot 4 ; \mathrm{H}, 8 \cdot 2 \%), m / e 448\left(M^{+}, \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}\right), \nu_{\text {max. }} 1740,1716$, and $1705 \mathrm{~cm}^{-1}$.
11α-Hydroxy-5 α-androstan-3-one (no. 163). ${ }^{10}$ (a) Incubation: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 3 d , extraction $\mathrm{II} \longrightarrow 350 \mathrm{mg}$ mycelial extract and 1.2 g broth extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 25 g) of mycelial extract gave s.m. (50 mg). The broth extract was separated by p.l.c. [3 large plates, $1 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-$ EtOH (16:4:1)] to give, in order of decreasing R_{F}, 11α-hydroxy- 5α-androstane-3,16-dione (no. 204) (39 mg), $\mathrm{m} . \mathrm{p}$. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .256-258^{\circ}$; ll $\alpha, 16 \beta$-dihydroxy- 5α-androstan- 3 -one (no. 292) (451 mg), $\mathrm{m} . \mathrm{p}$. (from $\mathrm{Me}_{2} \mathrm{CO}-$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p}$. 200-204 ${ }^{\circ}$; $11 \alpha, 16 \alpha$-dihydroxy-5 α-androstan-3-one (no. 594) (136 mg), m.p. $220-223^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-22^{\circ}(c 0.4)$ (Found: C, $\mathbf{7 4 . 7 5} ; \mathrm{H}, 10 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 . 5} ; \mathrm{H}, \mathbf{9 . 9} \%$), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1707 \mathrm{~cm}^{-1}$; and 5α-androstane$3 \beta, 11 \alpha, 16 \beta$-triol (no. 325) (111 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ $\mathrm{MeOH})$ and mixed ${ }^{1} \mathrm{~m}$. p. $250 \cdot 5-251 \cdot 5^{\circ}$.
(b) Transformation: Oxidation of $11 \alpha, 16 \alpha$-dihydroxy5α-androstan- 3 -one (no. 594) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α -androstane-3,11,16-trione (no. 85).

11ß-Hydroxy-5 α-androstan-3-one (no. 166). ${ }^{5}$ (a) Incubation: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 3 d , extraction II $\longrightarrow 1.28 \mathrm{~g}$ mycelial extract and 870 mg broth extract. P.l.c. [3 large plates, $\mathrm{I} \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-$ $\mathrm{EtOH}(16: 2: 1)]$ of the mycelial extract gave $5 . \mathrm{m}$. $(275 \mathrm{mg}$). P.l.c. $\left[2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}\right.$ (16:4:1)] of the broth extract gave, in order of decreasing $R_{\mathrm{F}}, 16 \beta$-hydroxy- 5α -androstane-3,11-dione (no. 564) (66 mg), m.p. and mixed m.p. 174-175 ${ }^{\circ}$; $11 \beta, 16 \beta$-dihydroxy-5 α-androstan-3-one (no. 596) (83 mg), m.p. $214-215^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\text {p }}$ $+28^{\circ}(c 0 \cdot 4)$ (Found: C, $\mathbf{7 4 \cdot 2} ; \mathrm{H}, \mathbf{9 . 8} . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $74.5 ; \mathrm{H}, 9.9 \%)$, $\nu_{\max .}\left(\mathrm{CHCl}_{3}\right) 3605$ and $1708 \mathrm{~cm}^{-1}$; $9 \alpha, 16 \beta$-dihydroxy- 5α-androstane-3,11-dione (no. 604) (105 mg), m.p. and mixed m.p. 216-217 $; 3 \beta, 16 \beta$-dihydroxy5α-androstan-11-one (no. 264) (68 mg), m.p. and mixed m.p. 232-233 ; and a mixture (91 mg), separated by further p.l.c. [2 small plates, $2 \times \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(49: 1)$] into 5α-androstane- $3 \beta, 11 \beta, 16 \beta$,triol (no. 620) (30 mg), m.p. $185-$ 186° (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+13^{\circ}(c 0 \cdot 6)$ (Found: C,
${ }^{16}$ S. Binns, J. S. G. Cox, Sir Ewart R. H. Jones, and B. G. Ketcheson, J. Chem. Soc., 1964, 1161.
$73.8 ; \mathrm{H}, 10.6 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 10.5 \%$), $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3608 \mathrm{~cm}^{-1}$, and material (24 mg) shown by n.m.r. to be a $3: 1$ mixture of $3 \beta, 6 \alpha$-dihydroxy- 5α-andro-stan-11-one (no. 575) and 3β-16 α-dihydroxy- 5α-androstan-11-one (no. 580).
(b) Transformations: Oxidation of $11 \beta, 16 \beta$-dihydroxy5α-androstan-3-one (no. 596) and of 5α-androstane$3 \beta, 11 \beta, 16 \beta$-triol (no. 620) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-andro-stane- $3,11,16$-trione (no. 85). Reduction of $3 \beta, 16 \beta$-di-hydroxy-5 α-androstan-Il-one (no. 264) (50 mg) with $\mathrm{LiAlH}_{4}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ gave 5α-androstane$3 \beta, 11 \beta, 16 \beta$-triol (no. 620) (45 mg).
$5 \alpha-$ Androstane-3,16-dione (no. 40). ${ }^{6}$. (a) Incubation: 80 mg in $\mathrm{Me}_{2} \mathrm{SO}$ (12 ml), 2 flasks, medium B, 2 d , extraction $\mathrm{II} \longrightarrow 100 \mathrm{mg}$ combined extracts. P.l.c. $[1$ medium plate, $\left.1 \times \mathrm{C}_{6} \mathrm{H}_{6}-\operatorname{EtOAc}(2: 1)\right]$ gave $3 \beta, 7 \alpha$-dihydroxy- 5α -androstan-16-one (no. 247) (42 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. 255-258 ${ }^{\circ}$.

16ß-Hydroxy-5 α-androstan-3-one (no. 176). ${ }^{6}$ (a) Incubation: 100 mg in $\mathrm{Me}_{2} \mathrm{SO}(18 \mathrm{ml}), 3$ flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction II $\longrightarrow 140 \mathrm{mg}$ combined extracts. P.l.c. [I medium plate, $2 \times \mathrm{C}_{6} \mathrm{H}_{6}-$ EtOAc (2:1)] gave $11 \alpha, 16 \beta-$ dihydroxy-5 α-androstan-3-one (no. 292) (higher R_{F}) (75 mg), m.p. and mixed m.p. 207-208 ${ }^{\circ}$, and 5α-androstane$3 \beta, 11 \alpha, 16 \beta$-triol (no. 325) (lower R_{F}) (29 mg), m.p. and mixed m.p. 247-248 ${ }^{\circ}$.

3ß-Hydroxy-5 -androstan-16-one (no. 150). ${ }^{6}$ (a) Incubation: 80 mg in $\mathrm{Me}_{2} \mathrm{SO}(12 \mathrm{ml}), 2$ flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 100 \mathrm{mg}$ combined extracts. Crystallisation from $\mathrm{Me}_{2} \mathrm{CO}$-hexane gave $3 \beta, 7 \alpha$-dihydroxy- 5α-andro-stan-16-one (no. 247) (76 mg), m.p. and mixed m.p. $257-259^{\circ}$.
(b) Transformation: Oxidation of the dihydroxy-ketone (no. 247) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,7,16-trione (no. 82), m.p. and mixed m.p. 240-242 ${ }^{\circ}$.
$5 \alpha-$ Androstane-3,17-dione (no. 42). (a) Incubation: 960 mg in EtOH (48 ml), 24 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial and broth extracts. Filtration of the mycelial extract, in $\mathrm{Et}_{2} \mathrm{O}$, through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 20 g) gave s.m. (310 mg). The broth extract (700 mg), in EtOAc-MeOH ($9: 1$), was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 40 g$)$. P.l.c. [2 large plates, $2 \times$ petrol$\left.\mathrm{Me}_{2} \mathrm{CO}(3: 1)\right]$ gave, in order of decreasing $R_{\mathrm{F}}, 11 \alpha$-hydroxy$5 \alpha$-androstane-3,17-dione (no. 519) (160 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{17} \mathrm{~m} . \mathrm{p}$. $190-193^{\circ} ; 6 \alpha-h y d r o x y-$ $5 \alpha-$ androstane-3,17-dione (no. 560) (100 mg), m.p. 206-207 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+119^{\circ}(c 0.9)$ (Found: C, $75 \cdot \mathrm{I}$; $\mathrm{H}, \mathbf{9} \cdot \mathrm{I}$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, $\mathbf{7 5 \cdot 0} ; \mathrm{H}, \mathbf{9 . 3} \%$), $\nu_{\text {max }} \mathbf{3 5 , 8 0}$ 1735 , and $1710 \mathrm{~cm}^{-1} ; 3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 250) (25 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. 243-244 ; and $3 \beta, 6 \alpha$-dihydroxy-5 α-androstan-17-one (no. 246) * (20 mg), m.p. 222- 224° (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}$ $+111^{\circ}(c 0.5)$ (Found: C, 74.7; H, 9.8. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $74.5 ; \mathrm{H}, 9.9 \%$), $v_{\max .}\left(\mathrm{CHCl}_{3}\right) 3610$ and $1747 \mathrm{~cm}^{-1}$.
(b) Transformations: The material (50 mg) from the mother liquor of the crystallisation of 6α-hydroxy- $5 \alpha-$ androstan-3,17-dione (no. 560) was dissolved in CHCl_{3}, filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 5 g), and oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to give material (40 mg) shown by n.m.r. to be a $1: 1$ mixture of 5α-androstane-3,7,17-trione (no. 84) (presumably formed from 7β-hydroxy- 5α-androstane-3,17dione) and 5α-androstane-3,6,17-trione (no. 78).
3α-Hydroxy-5 α-androstan-17-one (no. 146). (a) Incu-
${ }^{17} \mathrm{Ch}$. Meystre, J. Kalvoda, G. Anner, and A. Wettstein, Helv. Chim. Acta, 1963, 46, 2844.
bation: 1 g in $\mathrm{Me}_{2} \mathrm{CO}(150 \mathrm{ml}), 25$ flasks, medium A, 2 d , extraction III $\longrightarrow 2.0 \mathrm{~g}$ total extract. Chromat. alumina (5% deactivated; 100 g). Petrol gave non-steroidal material. EtOAc afforded a mixture (1.23 g), separated by p.l.c. [2 large plates, $2 \times$ EtOAc] to give, in order of decreasing R_{F}, s.m. (70 mg); $3 \alpha, 11 \alpha$-dihydroxy- 5α-andro-stan-17-one (no. 242) (227 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{14} \mathrm{~m} . \mathrm{p} .191-193^{\circ} ; 3 \alpha, 7 \beta$-dihydroxy- 5α-androstan-17one (no. 241) * (238 mg), m.p. 201-202 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+129^{\circ}(c 0.6)$ (Found: C, 74.8; H, 9.8. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9 \cdot 9 \%\right)$, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1735 \mathrm{~cm}^{-1}$; and $3 \alpha, 6 \alpha$-dihydroxy-5 α-androstan-17-one (no. 240)* (51 mg), m.p. 222- 224° (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{b}}+110^{\circ}$ (c $0 \cdot 3$) (Found: C, $74 \cdot 75 ; \mathrm{H}, \mathbf{9 . 7 5} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3600$ and $1740 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of $3 \alpha, 7 \beta$-dihydroxy- 5α -androstan-17-one (no. 24I) (50 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane- $3,7,17$-trione (no. 84) (43 mg), m.p. and mixed m.p. 238- 240° (lit., ${ }^{18} 236-238^{\circ}$); $3 \alpha, 6 \alpha$-dihydroxy5α-androstan-17-one (no. 240) (25 mg) gave 5α-androstane-3,6,17-trione (no. 78) (18 mg), m.p. and mixed m.p. $195-$ 197°.

3ß-Hydroxy-5 α-androstan-17-one (no. 151). (a) Incubation: 2.0 g in EtOH (100 ml), 50 flasks, medium B, 2 d , extraction II \longrightarrow mycelial extract (no s.m., discarded) and broth extract, chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(2 \%$ deactivated, 100 g$)$. Petrol- $\mathrm{CHCl}_{3}(1: 1)$ eluted 3β-hydroxy- 5α-androstane-7,17dione (no. 558) (10 mg), m.p. 202-204 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-2^{\circ}(c \quad 0.4)$ (Found: C, $75.3 ; \mathrm{H}, 9.15 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610,1740$, and $1710 \mathrm{~cm}^{-1}$. CHCl_{3} eluted $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 250) (1.0 g), m.p. and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. 240- 242°, and then $3 \beta, 7 \alpha$-dihydroxy- 5α-androstan-17-one (no. 249)* (310 mg), m.p. $194-195^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+58^{\circ}$ ($c 0.6$) (Found: $\mathrm{C}, 74.4 ; \mathrm{H}, 9.9 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%), \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3625$ and $1743 \mathrm{~cm}^{-1} . \mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(9: \mathrm{I})$ eluted $3 \beta, 6 \alpha$-dihydroxy- 5α-androstan-17-one (no. 246) $(250 \mathrm{mg}), \mathrm{m} . \mathrm{p}$. and mixed m.p. 222-224 ${ }^{\circ}$.
(b) Transformations: Oxidation of $3 \beta, 7 \alpha$-dihydroxy- $5 \alpha-$ androstan-17-one (no. 249) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave $5 x-$ androstane-3,7,17-trione (no. 84), m.p. and mixed m.p. $238-240^{\circ}$. Acetylation of $3 \beta, 6 \alpha$-dihydroxy- 5α-androstan-17-one (no. 246) gave $3 \beta, 6 \alpha$-diacetoxy- 5α-androstan-17-one (no. 576), m.p. $158-160^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+95.5^{\circ}$ (c 0.9) (Found: C, 70.75; H, 8.8. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 8.8 \%$), $v_{\text {max. }} 1745 \mathrm{~cm}^{-1}$.

17ß-Hydroxy- 5α-androstan-3-one (no. 411). (a) Incubation: 2.0 g in EtOH (100 ml), 50 flasks, medium B, 2 d , extraction II \rightarrow mycelial and broth extracts. P.l.c. of the mycelial extract gave s.m. (164 mg). The broth extract, in $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$, was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (10% deactivated; 20 g) and separated by p.l.c. [5 large plates, $1 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}$ ($16: 4: 1$)] to give, in order of decreasing $R_{\mathrm{F}}, 5,17 \beta$-dihydroxy- 5α-androstan- 3 -one (no. 585) (111 mg), m.p. 237-239 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}+21^{\circ}$ (c $1 \cdot 0$) (Found: C, 74.2; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1708 \mathrm{~cm}^{-1} ; 6 \alpha, 17 \beta-$ dihydroxy-5 α-androstan-3-one (no. 590) (587 mg), m.p. $207-209^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+42^{\circ}(c 1 \cdot 0)$ (Found: C, $74.3 ; \mathrm{H}, \mathbf{9 . 9} . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.9 \%$), $\nu_{\max } 3600$ and $1707 \mathrm{~cm}^{-1} ; 11 \alpha, 17 \beta$-dihydroxy- 5α-androstan-3-one (no. 296) * (667 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .204-205^{\circ}$; 5α-androstane- $3 \beta, 7 \beta, 17 \beta$-triol (no.
${ }^{18}$ H. B. Kagan and J. Jacques, Bull. Soc. chim. France, 1960, 1551.
617) (131 mg), m.p. 218-220 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\text {p }}$ $+41^{\circ}(c \mathrm{l} \cdot 0)$ (Found: $\mathrm{C}, \mathbf{7 4 \cdot 2 ;} \mathrm{H}, \mathbf{1 0} \cdot \mathbf{4 5} . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 10.5 \%)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600 \mathrm{~cm}^{-1} ; 5 \alpha$-androstane$3 \beta, 6 \alpha, 17 \beta-$ triol (no. 611) (90 mg), m.p. 238-240 ${ }^{\circ}$ (from $\left.\mathrm{Me}_{2} \mathrm{CO}\right),[\alpha]_{\mathrm{D}}(\mathrm{EtOH})+28^{\circ}(c \quad 0.3)$ (Found: C, 73.7; H, 10.6 . $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 \cdot 0} ; \mathrm{H}, \mathbf{1 0 . 5} \%$), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ cm^{-1}; and 5α-androstane- $3 \beta, 11 \alpha, 17 \beta$-triol (no. 523) (60 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .245-248^{\circ}$.
(b) Transformations: A solution of $5,17 \beta$-dihydroxy- $5 \alpha-$ androstan-3-one (no. 585) (15 mg) in MeOH (1 ml) was stirred with $2 \mathrm{~N}-\mathrm{NaOH}(0.1 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$ for 5 h . Work-up gave 17β-hydroxyandrost-4-en-3-one (no. 182) (8 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed m.p. 153- 156°. On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}, 6 \alpha, 17 \beta$-dihydroxy- 5α-androstan3 -one (no. 590) and 5α-androstane- $3 \beta, 6 \alpha, 17 \beta$-triol (no. 611) gave 5α-androstane- $3,6,17$-trione (no. 78); and 5α-andro-stane- $3 \beta, 7 \beta, 17 \beta$-triol (no. 617) gave 5α-androstane-3,7,17trione (no. 84). Acetylation of the $3 \beta, 7 \beta, 17 \beta$-triol (no. 617) gave $3 \beta, 7 \beta, 17 \beta$-triacetoxy- 5α-androstane (no. 618), m.p. $174-175^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+34^{\circ}$ (c 0.7) (lit., ${ }^{12} \mathrm{~m} . \mathrm{p}$. $172-173^{\circ},[\alpha]_{\mathrm{D}}+39^{\circ}$); the $3 \beta, 6 \alpha, 17 \beta$-triol (no. 611) gave $3 \beta, 6 \alpha, 17 \beta$-triacetoxy- 5α-androstane (no. 612) as an oil, $m / e 434\left(M^{+}\right), \nu_{\max } 1735 \mathrm{~cm}^{-1}$; and the $3 \beta, 11 \alpha, 17 \beta$-triol (no. 523) gave $3 \beta, 11 \alpha, 17 \beta$-triacetoxy- 5α-androstane (no. 619), m.p. 138- 140° (from hexane), $[\alpha]_{\mathrm{b}}-39^{\circ}(c \quad 0.9)$ (Found: C, 69.2; $\mathrm{H}, \mathbf{9 . 0} . \quad \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6}$ requires $\mathrm{C}, 69 \cdot \mathrm{I} ; \mathrm{H}, 8.8 \%$), $\nu_{\max } 1735 \mathrm{~cm}^{-1}$. A solution of $6 \alpha, 17 \beta$-dihydroxy- $5 \alpha-$ androstan-3-one (no. 590) (40 mg) in THF (5 ml) was refluxed with $\mathrm{LiAlH}_{4}(10 \mathrm{mg})$ for 30 min . Work-up gave 5α-androstane- $3 \beta, 6 \alpha, 17 \beta$-triol (no. 611) (30 mg), m.p. and mixed m.p. 238- 240°.

173-Hydroxyestr-4-en-3-one (no. 187). (a) Incubation: 3.98 g in $\mathrm{Me}_{2} \mathrm{SO}(588 \mathrm{ml}), 100$ flasks, medium $\mathrm{B}, 6 \mathrm{~d}$, extraction III \longrightarrow total extract, chromat. $\mathrm{Al}_{2} \mathrm{O}_{3} \quad(10 \%$ deactivated; 250 g). Petrol- CHCl_{3} (l:I) gave s.m. $(1.4 \mathrm{~g})$, and then a mixture (100 mg) which was discarded. $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1) gave a mixture which was acetylated and separated by p.l.c. [5 large plates, $2 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (5:1)]. The material with highest R_{F} was separated by further p.l.c. [1 large plate, $5 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(5: 1)\right]$ to give $16 \beta, 17 \beta$-diacetoxyestr-4-en-3-one (no. 600) ${ }^{19 a}$ (122 mg), m.p. $182-184^{\circ}, \nu_{\text {max. }} 1745$ and $1678 \mathrm{~cm}^{-1}$, and $10 \beta-$ hydroxy-3-oxoestr-4-en-17 β-yl acetate (no. 597) (333 mg), m.p. 178-179.5 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+48^{\circ}$ ($\left.\begin{array}{c}\mathrm{c} \\ \mathrm{l} \cdot 0\end{array}\right)$ (lit., ${ }^{20} \mathrm{~m} . \mathrm{p} . \mathrm{I}^{184-185^{\circ} \text {). The other two bands from the }}$ original p.l.c. afforded $6 \beta, 17 \beta$-diacetoxyestr-4-en-3-one (no. 598) (medium R_{F}) (635 mg), m.p. $134 \cdot 5-135 \cdot 5^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane $),[\alpha]_{\mathrm{D}}-31^{\circ}$ ($c 0.9$) (lit., ${ }^{196}$ m.p. $132-133^{\circ}$, $[\alpha]_{\mathrm{D}}-34^{\circ}$), and $11 \alpha, 17 \beta$-diacetoxyestr-4-en-3-one (no. 599) (lowest R_{F}) (332 mg), m.p. $189-190.5^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$ hexane), $[\alpha]_{\mathrm{b}}-42^{\circ}(c 1 \cdot 0)$ (lit., ${ }^{19 c}$ m.p. 189-192,$[\alpha]_{\mathrm{p}}-39^{\circ}$).
6α-Hydroxy- 5α-androstan-17-one (no. 552). ${ }^{9}$ (a) Incubation: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial and broth extracts. Mycelial extract chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 40 g). Petrol$\mathrm{CHCl}_{3}(2: 1)$ eluted s.m. (157 mg). Broth extract chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 70 g$) . \quad \mathrm{CHCl}_{3}$-petrol (3:1) eluted $6 \alpha, 11 \alpha$-dihydroxy- 5α-androstan-17-one (no. 529) (517 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. 183-185 ${ }^{\circ}$. $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3$) eluted $3 \beta, 6 \alpha$-dihydroxy- 5α-androstan17 -one (no. 246) (86 mg), m.p. and mixed m.p. 223- 226°.

17ß-Hydroxy-5 α-androstan-6-one (no. 184). ${ }^{9}$ (a) Incubation: 1 g in $\mathrm{EtOH}(50 \mathrm{ml}), 25$ flasks, medium B, 4 d ,
${ }^{19}$ J. De Flines, W. F. Van Der Waard, W. J. Mijs, and S. A. Szpilfogel, Rec. Trav. chim., 1963, 82, (a) 121; (b) 149; (c) 129.
extraction $\mathrm{II} \longrightarrow$ mycelial extract (very little s.m., discarded) and broth extract (1.3 g), which was separated by p.l.c. [4 large plates, $4 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOH}(16: 4: 1)$] to give, in order of decreasing R_{F}, an unidentified dihydroxyketone (55 mg), m.p. $187-191^{\circ}$ (decomp.) (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{p}}+25^{\circ}$ (c 0.1) (Found: C, 74.2; H, 9.85. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 . 5} ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3600$ and 1709 $\mathrm{cm}^{-1} ; 3 \alpha, 17 \beta$-dihydroxy-5 α-androstan-6-one (no. 572) (220 mg), m.p. 223-224 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{v}}-13.5^{\circ}(c$ 0.3) (Found: $\mathrm{C}, 74.7$; H, 9.7. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5$; $\mathrm{H}, 9.9 \%), \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $1705 \mathrm{~cm}^{-1} ; 3 \beta, 17 \beta-d i-$ hydroxy-5 α-androstan-6-one (no. 582) (243 mg), m.p. $217-$ 218° (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-25^{\circ}$ (c 0.6) (Found: C, $74 \cdot 1$; H, 9.7. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3600 and $1708 \mathrm{~cm}^{-1}$; $11 \alpha, 17 \beta$-dihydroxy- 5α-androstan-6-one (no. 595) (118 mg), m.p. $179-181^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}$ (EtOH) $-42^{\circ}(c 0.7)$ (Found: C, $74.5 ; \mathrm{H}, 10.0 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 . 5} ; \mathrm{H}, \mathbf{9 . 9} \%)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600$ and 1706 cm^{-1}; a mixture (255 mg), see later; and $3 \alpha, 11 \alpha, 17 \beta$-tri-hydroxy-5 α-androstan-6-one (no. 621) (77 mg), m.p. 228$231^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}$), $[\alpha]_{\mathrm{D}}$ (EtOH) -33° (c 0.4) (Found: C, $70.5 ; \mathrm{H}, 9.5 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}$, $\mathbf{9 . 4} \%$). Further p.l.c. of the mixture (255 mg) gave an unidentified trihydroxy-ketone (105 mg), m.p. 229-234 ${ }^{\circ}$ (from $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}$ (EtOH) - 17° (c 0.8) (Found: $\mathrm{C}, 70.9 ; \mathrm{H}, 9.6 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 9.4 \%$), and $\quad 5,11 \alpha, 17 \beta$-trihydroxy- 5α-androstan-6-one (no. 628) $(58 \mathrm{mg})$ as a gel, $m / e 322\left(M^{+}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}\right)$.
(b) Transformations: Oxidation of 3α - and $3 \beta, 17 \beta$-di-hydroxy- 5α-androstan-6-one (nos. 572 and 582) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,6,17-trione (no. 78); $11 \alpha, 17 \beta$-dihydroxy- 5α-androstan- 6 -one (no. 595) gave $5 \alpha-$ androstane-6,11,17-trione (no. 96), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{2} \mathrm{~m}$. p. $215-218^{\circ}$; and $5,11 \alpha, 17 \beta$-tri-hydroxy-5 α-androstan-6-one (no. 628) (12 mg) gave 5 -hydroxy-5 α-androstane-6,11,17-trione (no. 566) (11 mg), m.p. 281-282 ${ }^{\circ}$ (decomp.) (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+74 \cdot 5^{\circ}$ (c 0.1), $m / e 318 \cdot 183 \mathrm{I}\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}\right.$ requires $\left.M^{+}, 318 \cdot 1831\right)$, $v_{\max }$ (high resolution) 3603,1750 , and $1722 \mathrm{~cm}^{-1}$, whose structure was confirmed by spectrometric comparison with the model 5 -hydroxy-6-ketones described later. Oxidation of $3 \alpha, 11 \alpha-17 \beta$-trihydroxy- 5α-androstane-6-one (no. 621) (25 mg) gave 5α-androstane-3,6,11,17-tetraone (no. 545) (18 mg), m.p. 248- 249° (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{p}}+134^{\circ}$ (c 0.2) (Found: C, 71.85; H, 7.6. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C , $72 \cdot 1 ; \mathrm{H}, 7.65 \%)$, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1745$ and $1715 \mathrm{~cm}^{-1}$. Acetylation of the trihydroxy-ketone (no. 621) gave $3 \alpha, 11 \alpha, 17 \beta-$ triacetoxy-5 α-androstan-6-one (no. 622), m.p. 195-202 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}-62^{\circ}(c 0.4)$ (Found: $\mathrm{C}, 67 \cdot 1$; $\mathrm{H}, 8.0 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.9 ; \mathrm{H}, 8.1 \%$), $v_{\text {max. }} 1730$ cm^{-1}; the trihydroxy-ketone (no. 628) gave $11 \alpha, 17 \beta-$ diacetoxy-5-hydroxy-5 α-androstan-6-one (no. 629), m.p. 265$266^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}-114^{\circ}$ (c 0.2) (Found: C, 68.15; $\mathrm{H}, 8.3$. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.95 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max. }}$ (high resolution) 3604,1735 , and $1720 \mathrm{~cm}^{-1}$.

5-Hydroxy-5 -androstan-6-one (no. 549) and 5-Hydroxy5β-androstan-6-one (no. 550).-Solutions of m-chloroperoxybenzoic acid $(2 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ and of androst-5-ene (2 g) in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ were mixed and stirred at $20^{\circ} \mathrm{C}$ for 5 h . Work-up gave material (2.2 g) which was dissolved in dioxan (60 ml) and stirred with $2 \mathrm{~N}-\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$

[^6]for 20 h . After work-up and chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (2% deactivated; 200 g) the material (1.65 g , presumed to be 5α-androstane- $5,6 \beta$-diol) eluted with $\mathrm{Et}_{2} \mathrm{O}$-petrol (3:1) was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to give 5 -hydro $x y$ - 5α-androstan-6-one (no. 549) ($1 \cdot 4 \mathrm{~g}$), m.p. 183- 184° (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{b}}-85^{\circ}(c \mathrm{I} \cdot 0)$ (Found: C, 78.85 ; $\mathrm{H}, 10.3 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, \mathbf{7 8 . 6} ; \mathrm{H}, 10.4 \%$), $v_{\text {max }}$ (high resolution) 3605 and $1719 \mathrm{~cm}^{-1}$. A solution of this hydroxy-ketone (310 mg) and $\mathrm{KOH}(8 \mathrm{~g})$ in $\mathrm{MeOH}(80 \mathrm{ml})$ was boiled under reflux for 9 h to give 5 -hydroxy-5 β-androstan-6-one (no. 550), m.p. $115-116^{\circ}$ (from MeOH) (252 mg), $[\alpha]_{\mathrm{p}}-52^{\circ}(c \mathrm{I} \cdot 0)$ (Found: $\mathrm{C}, 78.7 ; \mathrm{H}, 10.3 \%), v_{\text {max }} 3480$ and $1705 \mathrm{~cm}^{-1}$.
5α-Androstane-7,17-dione (no. 51). ${ }^{8}$ (a) Incubation: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial extract (containing no s.m.) and broth extract, chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 70 g). PetrolCHCl_{3} and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ eluted material separated by p.l.c. $\left[1 \times\right.$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$ to give, in order of decreasing R_{F}, 3β-hydroxy- 5α-androstane-7,17-dione (no. 558) (76 mg), m.p. and mixed m.p. 202-204 ; 3 3 -hydroxy- $5 \alpha-$ androstane-7,17-dione (no. 556) (393 mg), m.p. 222-223.5 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{hexane}$), $[\alpha]_{\mathrm{p}}-6 \cdot 5^{\circ}(c 1 \cdot 0)$ (lit., ${ }^{20} \mathrm{~m} . \mathrm{p} .220$ -$\left.221^{\circ},[\alpha]_{\mathrm{p}}-10.5^{\circ}\right) ; 3 \beta, 17 \beta$-dihydroxy- 5α-androstan-7-one (no. 266) * (43 mg), m.p. 200-202 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-58^{\circ}(c 0.2)$ (lit., $\left.{ }^{12} \mathrm{~m} . \mathrm{p} .198 \cdot 5-199 \cdot 5^{\circ},[\alpha]_{\mathrm{D}}-53^{\circ}\right)$; and $3 \alpha, 17 \beta$-dihydroxy- 5α-androstan- 7 -one (no. 245) * (66 mg), m.p. 198-199 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-51 \cdot 5^{\circ}$ (c 0.5) (lit., ${ }^{21}$ m.p. $190-192^{\circ},[\alpha]_{\mathrm{D}}-80^{\circ}$). $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($9: 1$) eluted material which was acetylated to give $3 \alpha, 11 \alpha-$ diacetoxy- 5α-androstane-7,17-dione (no. 602) (70 mg), m.p. $148.5-150^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane), $[\alpha]_{\mathrm{D}}-19^{\circ}(c 0.6)$ (Found: C, $68.5 ; \mathrm{H}, 8.0 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.3 ; \mathrm{H}, 8.0 \%$), $\nu_{\text {max. }} 1735 \mathrm{~cm}^{-1}$.
(b) Transformations: Oxidation of $3 \alpha-$ and 3β-hydroxy5α-androstane-7,17-diones (nos. 556 and 558) with 8 N $\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,7,17-trione (no. 84). Acetylation of $3 \alpha, 17 \beta$-dihydroxy- 5α-androstan- 7 -one (no. 245) gave $3 \alpha, 17 \beta$-diacetoxy- 5α-androstan-7-one (no. 573), m.p. 186-188 ${ }^{\circ}$ (from MeOH), $[\alpha]_{\text {D }}-36.5^{\circ}$ (c 0.8) (Found: C, $70.6 ; \mathrm{H}, 8.6$. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max }}$ 1740 and $1710 \mathrm{~cm}^{-1}$.
17β-Hydroxy-5 α-androstan-7-one (no. 388). ${ }^{8}$ (a) Incubation: 600 mg in $\mathrm{EtOH}(30 \mathrm{ml})$, 15 flasks, medium B, 4 d , extraction $\mathrm{II} \rightarrow$ combined extract, chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 70 g). CHCl_{3} eluted $3 \beta, 17 \beta$-dihydroxy- $5 \alpha-$ androstan- 7 -one (no. 266) (78 mg), m.p. and mixed m.p. 198-201 ${ }^{\circ}$, and a mixture, which was separated by p.l.c. [1 large plate, $2 \times$ EtOAc] into $4 \alpha, 17 \beta$-dihydroxy- $5 \alpha-$ androstan-7-one (no. 583) (lower R_{F}) (22 mg), m.p. 207$208^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{p}}-60^{\circ}(c 0 \cdot 1)$ (Found: C, 74.7 ; $\mathrm{H}, 9.7 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, \mathbf{9 . 9} \%$), $\nu_{\text {max. }}$ 3620 and $1710 \mathrm{~cm}^{-1}$, and $3 \alpha, 17 \beta$-dihydroxy- 5α-androstan-7one (no. 245) (higher R_{F}) (326 mg), m.p. and mixed m.p. 197-199 ${ }^{\circ}$.
(b) Transformation: Oxidation of $4 \alpha, 17 \beta$-dihydroxy- 5α -androstan-7-one (no. 583) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-andro-stane-4,7,17-trione (no. 542), m.p. 210-212 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+20^{\circ}(c 0 \cdot 2)$, m/e $302 \cdot 1926\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires $M^{+}, 302 \cdot 1882$), $\nu_{\text {max. }} 1748$ and $1720 \mathrm{~cm}^{-1}$.
7α-Hydroxy-5 α-androstan-17-one (no. 554). ${ }^{22}$ (a) Incubation: 80 mg in EtOH (4 ml), 2 flasks, medium B, 4 d , extraction II $\longrightarrow 110 \mathrm{mg}$ combined extracts. P.l.c. [2 small plates, $1 \times$ EtOAc] gave $\mathrm{s} . \mathrm{m}$. (8 mg) and $3 \beta, 7 \alpha$-di-
${ }^{21}$ J. Joska, J. Fajkos, and F. Sorm, Coll. Czech. Chem. Comm., 1961, 26, 1646.
hydroxy-5 α-androstan-17-one (no. 249) (57 mg), m.p. and mixed m.p. 193- 195°.

7阝-Hydroxy-5 α-androstan-17-one (no. 369). ${ }^{22}$ (a) Incubation: 93 mg in EtOH (6 ml), 3 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 125 \mathrm{mg}$ combined extracts. P.l.c. [2 small plates, $1 \times$ EtOAc] gave s.m. (23 mg) and $3 \beta, 7 \beta$-di-hydroxy- 5α-androstan-17-one (no. 250) (42 mg), m.p. and mixed m.p. 242-244 .
$5 \alpha-A$ ndrostane-11,16-dione (no. 53). ${ }^{8}$ (a) Incubation: 160 mg in EtOH (8 ml), 4 flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction III \rightarrow total extract. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; $6 \mathrm{~g})$. Petrol- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$ eluted s.m. $(36 \mathrm{mg})$. Petrol$\mathrm{Et}_{2} \mathrm{O}(\mathbf{l}: 4)$ eluted material (95 mg) shown by n.m.r. to be a 3:2 mixture of 3α-hydroxy- 5α-androstane-11,16-dione and 3β-hydroxy- 5α-androstane-11,16-dione (no. 559). Fractional crystallisation afforded 3β-hydroxy- 5α-andro-stan-11,16-dione (no. 559), m.p. and mixed m.p. 232$234^{\circ}$; the 3α-hydroxy-isomer was not isolated.

Incubation of the diketone (no. 53) (488 mg) for 6 days gave s.m. (113 mg), a mixture of 3α - and 3β-hydroxy- $5 \alpha-$ androstane-11,16-diones (64 mg), and $3 \beta, 7 \beta$-dihydroxy- 5α -androstane-11,16-dione (no. 601) (101 mg), m.p. and mixed m.p. 203-205 ${ }^{\circ}$.
(b) Transformation: Oxidation of the mixture (50 mg) of 3α - and 3β-hydroxy-ll,16-diones with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane- $3,11,16$-trione (no. 85) (44 mg).
5α-Androstane-11,17-dione (no. 54). ${ }^{10}$ (a) Incubation: 1.4 g in $\mathrm{EtOH}(70 \mathrm{ml}), 35$ flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow 3.8 \mathrm{~g}$ mycelial extract and 2.4 g broth extract. Chromat. of the mycelial extract on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 40 g) and elution with petrol- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$ gave s.m. (295 mg). The broth extract, in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(9: \mathrm{I})$, was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 50 g). P.l.c. [2 large plates, $1 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$ gave, in order of decreasing $R_{\mathrm{F}}, 3 \alpha$-hydroxy- $\boldsymbol{5} \alpha$-androstane-11,17-dione (no. 557) (168 mg), m.p. $150-152^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+129^{\circ}(c \quad 0.5)\left(\right.$ lit., ${ }^{23}$ m.p. $150-151^{\circ},{ }^{\circ} \alpha_{\mathrm{D}}{ }_{\mathrm{D}}+124^{\circ}$); $4 \alpha, 17 \beta$-dihydroxy-5 α-androstan-11-one (no. 584) (180 mg), m.p. 212-214 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+67^{\circ}$ (c 0.9) (Found: C, 74.3; H, 9.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}$, 9.9%), $\nu_{\text {max }} 3610$ and $1705 \mathrm{~cm}^{-1}$; and $3 \alpha, 17 \beta$-dihydroxy- $5 \alpha-$ androstan-11-one (no. 574) (417 mg), m.p. 233-234 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+55^{\circ}(c \quad 0.8)$ (Found: C, $74.6 ; \mathrm{H}$, $10.0 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 74.5 ; \mathrm{H}, \mathbf{9 . 9} \%\right)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 3600 and $1705 \mathrm{~cm}^{-1}$.
(b) Transformations: On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}, 3 \alpha-$ hydroxy- 5α-androstane-11,17-dione (no. 557) and $3 \alpha, 17 \beta-$ dihydroxy- 5α-androstan-11-one (no. 574) gave 5α-andro-stane-3,11,17-trione (no. 358), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .176-178^{\circ} ; 4 \alpha, 17 \beta$-dihydroxy- 5α-andro-stan-11-one (no. 584) gave 5α-androstane-4,11,17-trione (no. 543), m.p. $220-224^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{p}}+133^{\circ}$ (c 0.7) (Found: C, 75.3; H, 8.5. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 8.7 \%), \nu_{\text {max }} 1740$ and $1710 \mathrm{~cm}^{-1}$.
17ß-Hydroxy-5 α-androstan-11-one (no 555). ${ }^{24}$ (a) Incubation: 400 mg in EtOH (20 ml), 10 flasks, medium B, 4 d , extraction $\mathrm{I} \longrightarrow$ mycelial and broth extracts. Chromat. of the mycelial extract on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 40 g$)$ and elution with petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($4: \mathrm{l}$) gave s.m. (98 mg). Broth extract chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 50 g$)$. Petrol- $\mathrm{Et}_{2} \mathrm{O}$ (4:1) gave s.m. (5 mg). $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(99: 1)$

[^7]eluted material which, on purification by p.1.c. $[1$ small plate, $2 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$, gave $4 \alpha, 17 \beta$-dihydroxy- 5α-andro-stan-Il-one (no. 584) (80 mg), m.p. and mixed m.p. 212$214^{\circ}$. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(48: \mathrm{I})$ eluted $3 \alpha, 17 \beta$-dihydroxy- $5 \alpha-$ androstan-ll-one (no. 574) (150 mg), m.p. and mixed m.p. 232-234 ${ }^{\circ}$.

We thank Mr. J. W. Keeping for assistance in the microbiological work. We also thank the S.R.C. for a student-
ship (to V. E. M. C.), a fellowship (to J. M. E.), and a Research Grant, I.C.I. Ltd., for a Postdoctoral Fellowship (to W. A. D.), The Salters' Company for a Scholarship (to J. H. P.), the Czechoslovak Academy of Science whose Agreement on Co-operation with the Royal Society allowed A. K. to participate, and Glaxo Laboratories Ltd. for a grant and gifts of chemicals.
[3/290 Received, 8th February, 1973]

[^0]: ${ }^{1}$ Part VII, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S. Perkin I, preceding paper.

[^1]: ${ }^{2}$ A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, J.C.S. Perkin I, 1972, 2081.

[^2]: * The yields shown in Table 1 differ from those recorded in the preliminary account, ${ }^{3}$ which referred to initial small-scale incubations. Further, the main reaction with 11β-hydroxy-5 α -androstan-3-one is 16β-hydroxylation (Table 1); previously ${ }^{3}$ the major product was formulated incorrectly as $11 \beta, 16 \alpha$-dihydroxy5α-androstan-3-one.

[^3]: ${ }^{3}$ J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, and J. Wicha, Chem. Comm., 1969, 1491.
 ${ }^{4}$ W. Charney and H. L. Herzog, ' Microbial Transformations of Steroids,' Academic Press, New York, 1967.
 ${ }_{5}$ Part XI, in preparation.

[^4]: 10 A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, A. Kasal, and G. D. Meakins, J.C.S. Perkin I, 1972, 2930.
 ${ }^{11}$ R. Sciaky and A. Consonni, Gazzetta, 1962, 92, 730.

[^5]: ${ }^{14}$ J. W. Blunt. I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.

[^6]: ${ }^{20}$ R. L. Pederson, J. A. Campbell, J. C. Babcock, S. H. Eppstein, H. C. Murray, A. Weintraub, R. C. Meeks, P. D. Meister, L. M. Reineke, and D. H. Peterson, J. Amer. Chem. Soc., 1956, 78, 1512.

[^7]: ${ }^{22}$ M. Mailloux, J. Weinman, and S. Weinman, Butl. Soc. chim. France, 1969, 617.
 ${ }^{23}$ W. Klyne and S. Ridley, J. Chem. Soc., 1956, 4825.
 ${ }^{24}$ W. Klyne and S. Palmer, J. Chem. Soc., 1958, 4545.

